EI / SCOPUS / CSCD 收录

中文核心期刊

LIU Siyu, WANG Yunshi, KAN Weiwei. Split step phase shift migration based photoacoustic imaging in heterogeneous medium[J]. ACTA ACUSTICA, 2024, 49(3): 392-397. DOI: 10.12395/0371-0025.2024080
Citation: LIU Siyu, WANG Yunshi, KAN Weiwei. Split step phase shift migration based photoacoustic imaging in heterogeneous medium[J]. ACTA ACUSTICA, 2024, 49(3): 392-397. DOI: 10.12395/0371-0025.2024080

Split step phase shift migration based photoacoustic imaging in heterogeneous medium

More Information
  • PACS: 
    • 43.35  (Ultrasonics, quantum acoustics, and physical effects of sound)
  • Received Date: March 13, 2023
  • Revised Date: April 14, 2023
  • Available Online: May 08, 2024
  • To address the limited image reconstruction capability of the wavefield extrapolation method in heterogeneous layered media with nonuniform lateral sound speed, split step phase shift migration based photoacoustic imaging in heterogeneous medium is proposed. This method treats the lateral sound speed difference as an equivalent perturbation sound source at the interface of the layered medium. Such a virtual perturbation sound source can be used to generate additional corrective phase shifts on the reconstructive acoustic field. By employing a hybrid extrapolation mechanism with variable step size, layer-by-layer reconstruction of the photoacoustic wave field can be achieved. Both simulation and experimental results demonstrate that the proposed split step phase shift migration method can effectively suppress the generation of artifacts in photoacoustic imaging in irregular layered media, enhance image resolution, and improve image contrast.

  • [1]
    Yao J J, Wang L D, Yang J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods, 2015; 12(5): 407−410 DOI: 10.1038/nmeth.3336
    [2]
    许凯亮, 付亚鹏, 闫少渊, 等. 基于超快超声多普勒的三维脑损伤成像方法研究. 声学学报, 2023; 48(1): 173−181 DOI: 10.15949/j.cnki.0371-0025.2023.01.024
    [3]
    Na S, Russin J J, Lin L, et al. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. l Eng., 2021; 6(5): 584−592 DOI: 10.1038/s41551-021-00735-8
    [4]
    Liang B Y, Liu W, Zhan Q W, et al. Impacts of the murine skull on high-frequency transcranial photoacoustic brain imaging. J. Biophotonics, 2019; 12(7): e201800466 DOI: 10.1002/jbio.201800466
    [5]
    Guo J D, Song X Z, Chen X R, et al. Mathematical model of ultrasound attenuation with skull thickness for transcranial-focused ultrasound. Front. Neurosci., 2021; 15: 778616 DOI: 10.3389/fnins.2021.778616
    [6]
    Gerstenmayer M, Fellah B, Magnin R, et al. Acoustic transmission factor through the rat skull as a function of body mass, frequency and position. Ultrasound Med. Biol., 2018; 44(11): 2336−2344 DOI: 10.1016/j.ultrasmedbio.2018.06.005
    [7]
    Yang X M, Wang L H. Monkey brain cortex imaging by photoacoustic tomography. J. Biomed. Opt., 2008; 13(4): 044009 DOI: 10.1117/1.2967907
    [8]
    Schoonover R W, Anastasio M A. Image reconstruction in photoacoustic tomography involving layered acoustic media. J. Opt. Soc. Am. A, 2011; 28(6): 1114−1120 DOI: 10.1364/JOSAA.28.001114
    [9]
    Liu S Y, Feng X H, Jin H R, et al. Handheld photoacoustic imager for theranostics in 3D. IEEE Trans. Med. Imaging, 2019; 38(9): 2037−2046 DOI: 10.1109/TMI.2019.2900656
    [10]
    Liu S Y, Song W T, Liao X Q, et al. Development of a handheld volumetric photoacoustic imaging system with a central-holed 2D matrix aperture. IEEE Trans. Biomed. Eng., 2020; 67(9): 2482−2489 DOI: 10.1109/TBME.2019.2963464
    [11]
    Hazel Y, Özdemir Ö. The effect of uncertainties in skin layers on photoacoustic imaging of skin cancer. 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 2020
    [12]
    Jiang C, Li Y, Xu K L. Full-matrix phase shift migration method for transcranial ultrasonic imaging. IEEE Trans. Ultrason. Ferroelect. Freq. Control, 2021; 68(1): 72−83 DOI: 10.1109/TUFFC.2020.3016382
    [13]
    Jin H R, Liu S L, Zhang R C, et al. Frequency domain based virtual detector for heterogeneous media in photoacoustic imaging. IEEE Trans. Comput. Imaging, 2020; 6: 569−578 DOI: 10.1109/TCI.2020.2964240
    [14]
    Jin H R, Zhang R C, Liu S Y, et al. Passive ultrasound aided acoustic resolution photoacoustic microscopy imaging for layered heterogeneous media. Appl. Phys. Lett., 2018; 113(24): 241901 DOI: 10.1063/1.5064417
    [15]
    Wang L V. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron, 2008; 14(1): 171−179 DOI: 10.1109/JSTQE.2007.913398
    [16]
    Olofsson T. Phase shift migration for imaging layered objects and objects immersed in water. IEEE Trans. Ultrason. Ferroelect. Freq. Control, 2010; 57(11): 2522−2530 DOI: 10.1109/TUFFC.2010.1718
    [17]
    Stoffa P L, Fokkema J T, Freire R M, et al. Split-step Fourier migration. Geophysics, 1990; 55(4): 394−502 DOI: 10.1190/1.1442848
    [18]
    Treeby B E, Cox B T. K-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt., 2010; 15(2): 021314 DOI: 10.1117/1.3360308
    [19]
    张振辉, 王尔褀, 石玉娇. 光声技术在脑组织成像中的应用. 红外与激光工程, 2022; 51(11): 90−96 DOI: 10.3788/IRLA20220541
    [20]
    Chen W T, Tao C, Hu Z Z. Non-invasive and low-artifact in vivo brain imaging by using scanning acoustic-photoacoustic dual mode microscopy. Chin. Phys. B, 2022; 31(4): 044304 DOI: 10.1088/1674-1056/ac4a6f
  • Related Articles

    [1]AN Bingwen, WU Xianmei, LI Ziqi, LI Feiran. Response of π-phase-shifted fiber Bragg grating to inhomogeneous strain fields caused by ultrasonic wave[J]. ACTA ACUSTICA, 2023, 48(1): 119-127. DOI: 10.15949/j.cnki.0371-0025.2023.01.027
    [2]SHI Yirou, ZHAO Xupeng, YANG Yang, QIN Peng, HAN Tao. Accurate and simple extraction method of the phase of mutual-coupling and transduction coefficients for surface acoustic wave unidirectional transducer structure[J]. ACTA ACUSTICA, 2020, 45(6): 906-912. DOI: 10.15949/j.cnki.0371-0025.2020.06.014
    [3]ZHANG Xuecong, LYU Yan, WU Bin, HE Cunfu. Experimental study of transient wave displacement field calculation in phased array sound field simulation[J]. ACTA ACUSTICA, 2020, 45(3): 359-366. DOI: 10.15949/j.cnki.0371-0025.2020.03.008
    [4]ZHOU Hefeng, CENG Xinwu. Double-plane sound field separation after sound pressure extrapolation using back propagation neural networks[J]. ACTA ACUSTICA, 2018, 43(6): 873-882. DOI: 10.15949/j.cnki.0371-0025.2018.06.001
    [5]GAO Xiang, LI Jian, SHI Fangfang, MA Jun, WANG Wen, WANG Chenghao. Acoustic field analysis of detection and location of targets in layered media by time reversal-reverse time migration mixed method[J]. ACTA ACUSTICA, 2018, 43(4): 655-664. DOI: 10.15949/j.cnki.0371-0025.2018.04.025
    [6]LI Juan, FU Qiang, YAN Yonghong. Active listening room compensation based on wave field synthesis and wave field analysis[J]. ACTA ACUSTICA, 2014, 39(1): 137-144. DOI: 10.15949/j.cnki.0371-0025.2014.01.015
    [7]LI Juan, LI Junfeng, YAN Yonghong. Synthesis of perceived distance based on wave field synthesis[J]. ACTA ACUSTICA, 2013, 38(6): 743-748. DOI: 10.15949/j.cnki.0371-0025.2013.06.008
    [8]LIN Weijun, WU Nan, SUN Jian, ZHANG Hailan. An acoustic imaging system of migration technique used in borehole[J]. ACTA ACUSTICA, 2008, 33(2): 159-163. DOI: 10.15949/j.cnki.0371-0025.2008.02.012
    [9]JIN Shengwen, MA Zaitian, LI Peiming. Imaging the echo data of submarine sediment layers using wavefield extrapolation[J]. ACTA ACUSTICA, 1996, 21(S1): 672-678. DOI: 10.15949/j.cnki.0371-0025.1996.S1.035
    [10]YANG Xun-ren. CALCULATIONS FOR THE FIELD OF PLANE SOUND WAVES IN A REALISTIC ATMOSPHERE[J]. ACTA ACUSTICA, 1984, 9(1): 29-38. DOI: 10.15949/j.cnki.0371-0025.1984.01.004

Catalog

    Article Metrics

    Article views (113) PDF downloads (39) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return