EI / SCOPUS / CSCD 收录

中文核心期刊

HUANG Haining, YIN Jingwei, YANG Yanming, LIU Chonglei, HAN Xiao, ZHANG Yangfan, WEN Hongtao, ZHU Guangping. Recent advances in polar acoustics research in the continually changing Arctic[J]. ACTA ACUSTICA, 2025, 50(3): 537-550. DOI: 10.12395/0371-0025.2024422
Citation: HUANG Haining, YIN Jingwei, YANG Yanming, LIU Chonglei, HAN Xiao, ZHANG Yangfan, WEN Hongtao, ZHU Guangping. Recent advances in polar acoustics research in the continually changing Arctic[J]. ACTA ACUSTICA, 2025, 50(3): 537-550. DOI: 10.12395/0371-0025.2024422

Recent advances in polar acoustics research in the continually changing Arctic

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: December 30, 2024
  • Revised Date: April 14, 2025
  • Under the general trend of global warming, the climate and marine environment of the Arctic seas are changing persistently, which are manifestations of gradual decrease in the volume of sea ice, the gradual expansion of the open sea area in summer, the continuous reduction of multi-year ice. The hydrological stratification in the ice edge zone has become more complex. Under the influence of the phenomenon in oceanographical variabilities, the underwater acoustic environment in Arctic is also undergoing persistently changes. Starting from the characteristics of waveguide environments such as sea ice, hydrology, and seafloor in the new epoch Arctic seas, this article summarizes the latest research progress of the acoustic propagation characteristics, under-ice noise characteristics, and under-ice reverberation characteristics of the Arctic. Combining the domestic and foreign research progress of the Arctic acoustic observation experiments, special emphases are given on the comprehensive environmental observation of underwater acoustics, under-ice acoustic communication and navigation, and ice morphology acoustic monitoring. Finally, the research of the Arctic underwater acoustics is summarized and the future development trends are predicted.

  • [1]
    Mikhalevsky P N, Steele J H. Acoustics, Arctic. Encycl. Ocean Sci., 2001; 1: 53−61 DOI: 10.1016/B978-012374473-9.00314-3
    [2]
    Mikhalevsky P N, Gavrilov A N, Baggeroer A B. The transarctic acoustic propagation experiment and climate monitoring in the Arctic. IEEE J. Oceanic Eng., 1999; 24(2): 183−201 DOI: 10.1109/48.757270
    [3]
    Gavrilov A N, Mikhalevsky P N. Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment. J. Acoust. Soc. Am., 2006; 119(6): 3694−3706 DOI: 10.1121/1.2195255
    [4]
    李启虎, 黄海宁, 尹力, 等. 北极水声学研究的新进展和新动向. 声学学报, 2018; 43(4): 420−431 DOI: 10.15949/j.cnki.0371-0025.2018.04.002
    [5]
    Worcester P F, Badiey M, Sagen H. Introduction to the special issue on ocean acoustics in the changing Arctic. J. Acoust. Soc. Am., 2022; 151(4): 2787−2790 DOI: 10.1121/10.0010308
    [6]
    李启虎, 王宁, 赵进平, 等. 北极水声学: 一门引人关注的新型学科. 应用声学, 2014; 33(6): 471−483 DOI: 10.11684/j.issn.1000-310X.2014.06.001
    [7]
    黄海宁, 刘崇磊, 尹力, 等. 北极水声学与信号处理. 北京: 科学出版社, 2023
    [8]
    Galley R J, Babb D, Ogi M, et al. Replacement of multiyear sea ice and changes in the open water season duration in the Beaufort Sea since 2004. J. Geophys. Res. Oceans, 2016; 121(3): 1806−1823 DOI: 10.1002/2015JC011583
    [9]
    Perovich D, Meier W, Tschudi M, et al. Arctic Report Card 2015: Sea ice. National Oceanic and Atmospheric Administration, http://www.arctic.noaa.gov/reportcard
    [10]
    Johannessen O M, Bengtsson L, Miles M W, et al. Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus A: Dyn. Meteorol. Oceanogr., 2004; 56(4): 328−341 DOI: 10.3402/tellusa.v56i4.14418
    [11]
    Dong J, Jin M, Liu Y, et al. Interannual variability of surface salinity and Ekman pumping in the Canada Basin during summertime of 2003–2017. J. Geophys. Res.: Oceans, 2021; 126(11): 1−19 DOI: 10.1029/2021JC017176
    [12]
    Spall M A, Pickart R S, Li M, et al. Transport of Pacific water into the Canada Basin and the formation of the Chukchi Slope Current. J. Geophys. Res.: Oceans, 2018; 123(10): 7453−7471 DOI: 10.1029/2018JC013825
    [13]
    Timmermans M L, Toole J, Krishfield R. Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Sci. Adv., 2018; 4(8): 1−6 DOI: 10.1126/sciadv.aat6773
    [14]
    Gallaher S G, Stanton T P, Shaw W J, et al. Evolution of a Canada Basin ice-ocean boundary layer and mixed layer across a developing thermodynamically forced marginal ice zone. J. Geophys. Res.: Oceans, 2016; 121(8): 6223−6250 DOI: 10.1002/2016JC011778
    [15]
    Kucukosmanoglu M, Colosi J A, Worcester P F, et al. Observations of sound-speed fluctuations in the Beaufort Sea from summer 2016 to summer 2017. J. Acoust. Soc. Am., 2021; 149(3): 1536−1548 DOI: 10.1121/10.0003601
    [16]
    Worcester P F, Dzieciuch M A, Vazquez H J, et al. Acoustic travel-time variability observed on a 150-km radius tomographic array in the Canada Basin during 2016–2017. J. Acoust. Soc. Am., 2023; 153(5): 2621−2621 DOI: 10.1121/10.0019304
    [17]
    Pelletier B R. Marine science atlas of the Beaufort Sea: Geology and geophysics. Ottawa, Canada: Canadian Government Publishing Centre, 1987: 1−42
    [18]
    Shimeld J, Li, Q, Chian D, et al. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: Evidence for accelerated porosity reduction. Geophys. J. Int., 2023; 204(1): 1−20 DOI: 10.1093/gji/ggv416
    [19]
    Sagers J D, Ballard M S. Seabed properties at the 150 m isobath as observed during the 2016–2017 Canada Basin Acoustic Propagation Experiment. 176th Meeting of Acoustical Society of America 2018 Acoustics Week in Canada, Victoria, Canada, 2018: 1−13
    [20]
    Worcester P F, Ballard M S. Ocean acoustics in the changing Arctic. Phys. Today, 2020; 73(12): 44−49 DOI: 10.1063/PT.3.4635
    [21]
    Buck B M. Arctic acoustic transmission loss and ambient noise. TR66-20, GM Defense Research Laboratories, Sea Operations Department, SantaBarbara, CA, 1966: 1−14
    [22]
    Langleben M P. Reflection of sound at the water-sea ice interface. J. Geophys. Res., 1970; 75(27): 5243−5246 DOI: 10.1029/JC075i027p05243
    [23]
    Kucukosmanoglu M, Colosi J A, Worcester P F, et al. Beaufort Sea observations of 11 to 12.5 kHz surface pulse reflections near 50 degree grazing angle from summer 2016 to summer 2017. J. Acoust. Soc. Am., 2022; 151(1): 106−125 DOI: 10.1121/10.0009164
    [24]
    Diachok O I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am., 1976; 59(5): 1110−1120 DOI: 10.1121/1.380965
    [25]
    朱广平, 殷敬伟, 陈文剑, 等. 北极典型冰下声信道建模及特性. 声学学报, 2017; 42(2): 152−158 DOI: 10.15949/j.cnki.0371-0025.2017.02.003
    [26]
    Kuperman W A, Schmidt H. Rough surface elastic wave scattering in a horizontally stratified ocean. J. Acoust. Soc. Am., 1986; 79(6): 1767−1777 DOI: 10.1121/1.393238
    [27]
    Hope G, Sagen H, Storheim E, et al. Measured and modeled acoustic propagation underneath the rough Arctic sea-ice. J. Acoust. Soc. Am., 2017; 142(3): 1619−1633 DOI: 10.1121/1.5003786
    [28]
    黄海宁, 刘崇磊, 李启虎, 等. 典型北极冰下声信道多途结构分析及试验研究. 声学学报, 2018; 43(3): 273−282 DOI: 10.15949/j.cnki.0371-0025.2018.03.001
    [29]
    Barclay D R, Martin B S, Hines P C, et al. Observed transmissions and ocean-ice-acoustic coupled modelling in the Beaufort Sea. J. Acoust. Soc. Am., 2023; 154(1): 28−47 DOI: 10.1121/10.0019942
    [30]
    Ballard M S, Badiey M, Sagers J D, et al. Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf. J. Acoust. Soc. Am., 2020; 148(3): 1663−1680 DOI: 10.1121/10.0001970
    [31]
    Duda T F, Zhang W G, Lin Y T. Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting. J. Acoust. Soc. Am., 2021; 149(4): 2117−2136 DOI: 10.1121/10.0003929
    [32]
    Kucukosmanoglu M, Colosi J A, Worcester P F, et al. Observations of the space/time scales of Beaufort Sea acoustic duct variability and their impact on transmission loss via the Mode Interaction Parameter. J. Acoust. Soc. Am., 2023; 153(5): 2659 DOI: 10.1121/10.0019335
    [33]
    Cook E, Barclay D, Richards C. Ambient noise in the Canadian Arctic. In: Chircop A, Goerlandt F, Aporta C (eds), Governance of Arctic Shipping. Cham, Switzerland: Springer, 2020: 105−133
    [34]
    Kinda G B, Simard Y, Gervaise C, et al. Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing. J. Acoust. Soc. Am, 2013; 134(1): 77−87 DOI: 10.1121/1.4808330
    [35]
    Makris N C, Dyer I. Environmental correlates of Arctic ice-edge noise. J. Acoust. Soc. Am., 1991; 90(6): 3288−3298 DOI: 10.1121/1.401439
    [36]
    Wen H, Yang Y, Ruan H, et al. Nearfield measurements of ice melting noise in the central Arctic Ocean in summer. Polar Sci., 2020; 24: 100528 DOI: 10.1016/j.polar.2020.100528
    [37]
    Roth E H, Hildebrand J A, Wiggins S M, et al. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am., 2012; 131(1): 103−104 DOI: 10.1121/1.3664096
    [38]
    Chen R, Poulsen A, Schmidt H. Spectral, spatial, and temporal characteristics of underwater ambient noise in the Beaufort Sea in 1994 and 2016. J. Acoust. Soc. Am., 2019; 145(2): 605−614 DOI: 10.1121/1.5088601
    [39]
    Halliday W D, Barclay D, Barkley A N, et al. Underwater sound levels in the Canadian Arctic, 2014–2019. Mar. Pollut. Bull., 2021; 168: 112437 DOI: 10.1016/j.marpolbul.2021.112437
    [40]
    Wen H, Yang Y, Zhou H, et al. Comparison of underwater noise at the Chukchi Plateau under open-water and ice-covered conditions. Polar Sci., 2022; 33: 100870 DOI: 10.1016/j.polar.2022.100870
    [41]
    Mo X, Wen H, Yang Y, et al. Ocean ambient noise on the Chukchi Plateau and its environmental correlates. Mar. Environ. Res., 2023; 188: 106024 DOI: 10.1016/j.marenvres.2023.106024
    [42]
    Veitch J G, Wilks A R. A characterization of Arctic undersea noise. J. Acoust. Soc. Am., 1985; 77(3): 989−999 DOI: 10.1121/1.392067
    [43]
    卫翀华, 黄海宁, 尹力, 等. 双声道波导中低频环境噪声分布特性. 声学学报, 2019; 44(4): 417−428 DOI: 10.15949/j.cnki.0371-0025.2019.04.003
    [44]
    谭靖骞, 曹宇, 黄海宁, 等. 北极海域海洋环境噪声建模与特性分析. 应用声学, 2020; 39(5): 690−697 DOI: 10.11684/j.issn.1000-310X.2020.05.006
    [45]
    廖志宇, 朱广平, 殷敬伟, 等. 冰下脉冲噪声特性及信号检测性能分析. 哈尔滨工程大学学报, 2021; 42(5): 670−679 DOI: 10.11990/jheu.202010001
    [46]
    莫雪晶, 文洪涛, 杨燕明, 等. 一种α稳定分布参数估计方法及其在冰源噪声统计建模中的应用. 声学学报, 2023; 48(2): 319−326 DOI: 10.15949/j.cnki.0371-0025.2023.02.001
    [47]
    Mo X, Wen H, Yang Y, et al. Statistical characteristics of under-ice noise on the Arctic Chukchi Plateau. J. Acoust. Soc. Am., 2023; 154(4): 2489−2498 DOI: 10.1121/10.0021871
    [48]
    Mellen R H, Marsh H W. Underwater sound reverberation in the Arctic Ocean. J. Acoust. Soc. Am., 1963; 35(10): 1645−1648 DOI: 10.1121/1.1918774
    [49]
    Brown J R. Reverberation under Arctic ice. J. Acoust. Soc. Am., 1964; 36(3): 601−603 DOI: 10.1121/1.1919022
    [50]
    Hayward T J, Yang T C. Low-frequency Arctic reverberation. I: Measurement of under-ice backscattering strengths from short-range direct-path returns. J. Acoust. Soc. Am., 1993; 93(5): 2517−2523 DOI: 10.1121/1.405828
    [51]
    Yang T C, Hayward T J. Low-frequency Arctic reverberation. III: Measurement of ice and bottom backscattering strengths from medium-range bottom-bounce returns. J. Acoust. Soc. Am., 1993; 94(2): 1003−1014 DOI: 10.1121/1.406948
    [52]
    Yang T C, Hayward T J. Low-frequency Arctic reverberation. II: Modeling of long-range reverberation and comparison with data. J. Acoust. Soc. Am., 1993; 93(5): 2524−2534 DOI: 10.1121/1.405829
    [53]
    Milne A R. Underwater backscattering strengths of Arctic pack ice. J. Acoust. Soc. Am., 1964; 36(8): 1551−1556 DOI: 10.1121/1.1919242
    [54]
    Burke J E, Twersky V. Scattering and reflection by elliptically striated surfaces. J. Acoust. Soc. Am., 1966; 40(4): 883−895 DOI: 10.1121/1.1910161
    [55]
    Duckworth G, LePage K, Farrell T. Low-frequency long-range propagation and reverberation in the central Arctic: Analysis of experimental results. J. Acoust. Soc. Am., 2001; 110(2): 747−760 DOI: 10.1121/1.1371543
    [56]
    Ivakin A N, Williams K L. Midfrequency acoustic propagation and reverberation in a deep ice-covered Arctic ocean. J. Acoust. Soc. Am., 2022; 152(2): 1035−1044 DOI: 10.1121/10.0013503
    [57]
    顾鑫. 冰下混响强度建模及粗糙度参数反演研究. 硕士学位论文, 哈尔滨: 哈尔滨工程大学, 2020
    [58]
    朱广平, 顾鑫, 韩笑, 等. 双基地冰–水界面混响强度的理论预报. 声学学报, 2020; 45(3): 325−333 DOI: 10.15949/j.cnki.0371-0025.2020.03.004
    [59]
    王立婷. 冰下混响信号的建模仿真及统计特性的研究. 硕士学位论文, 哈尔滨: 哈尔滨工程大学, 2016
    [60]
    朱广平, 宋泽林, 殷敬伟, 等. 混响背景下低秩矩阵恢复的目标亮点特征提取. 声学学报, 2019; 44(4): 471−479 DOI: 10.15949/j.cnki.0371-0025.2019.04.008
    [61]
    Mikhalevsky P N, Sagen H, Worcester P F, et al. Multipurpose acoustic networks in the integrated Arctic Ocean observing system. Arctic, 2015; 68(S1): 11−27 DOI: 10.14430/arctic4449
    [62]
    Sagen H, Sandven S, Beszczynska-Möller A, et al. Acoustic technologies for observing the interior of the Arctic Ocean. Proceedings of Ocean, Venice, Italy, 2009: 1−5
    [63]
    Howe B M, Miksis-Olds J, Rehm E, et al. Observing the oceans acoustically. Front. Mar. Sci., 2019; 6: 1−26 DOI: 10.3389/fmars.2019.00426
    [64]
    Dumont D. Marginal ice zone dynamics: History, definitions and research perspectives. Phil. Trans. R. Soc. A., 2022; 380: 1−16 DOI: 10.1098/rsta.2021.0253
    [65]
    Lee C M, Cole S, Doble M, et al. Stratified ocean dynamics in the Arctic: Science and experiment plan. APL-UW TR 1601. Applied Physics Laboratory, University of Washington, Seattle, Washington, 2016
    [66]
    Lee C M, Starkweather S, Eicken H, et al. A framework for the development, design and implementation of a sustained Arctic Ocean observing system. Front. Mar. Sci., 2019; 6: 1−21 DOI: 10.3389/fmars.2019.00451
    [67]
    Lee C M, DeGrandpre M, Guthrie J, et al. Emerging technologies and approaches for in situ, autonomous observing in the Arctic. Oceanography, 2022; 35(3/4): 210−221 DOI: 10.5670/oceanog.2022.127
    [68]
    Freitag L, Koski P, Singh S, et al. Acoustic communications under shallow shore-fast Arctic ice. OCEANS 2017, IEEE, Anchorage, AK, USA: 1−5
    [69]
    Barbeau M, Blouin S, Traboulsi A. Performance of an underwater communication system in a sea trial done in the Canadian Arctic. IEEE International Mediterranean Conference on Communications and Networking, IEEE, Athens, Greece, 2021: 448−453
    [70]
    Bhatt E S C, Viquez O, Schmidt H. Under-ice acoustic navigation using real-time model-aided range estimation. J. Acoust. Soc. Am., 2022; 151(4): 2656−2671 DOI: 10.1121/10.0010260
    [71]
    程驰宇, 郑翠娥, 张居成, 等. 极地冰下声学定位导航技术现状及发展趋势. 导航与控制, 2024; 23(Z1): 15−24 DOI: 10.3969/j.issn.1674-5558.2024.h5.002
    [72]
    殷敬伟, 高新博, 韩笑, 等. 稀疏贝叶斯学习水声信道估计与脉冲噪声抑制方法. 声学学报, 2021; 46(6): 813−824 DOI: 10.15949/j.cnki.0371-0025.2021.06.004
    [73]
    Tian Y N, Han X, Yin J W, et al. Group sparse underwater acoustic channel estimation with impulsive noise: Simulation results based on Arctic ice cracking noise. J. Acoust. Soc. Am., 2019; 146(4): 2482−2491 DOI: 10.1121/1.5129056
    [74]
    刘崇磊, 尹力, 普湛清, 等. 基于声场模型的北极冰下扩频通信性能研究. 仪器仪表学报, 2018; 39(12): 255−264 DOI: 10.19650/j.cnki.cjsi.J1804096
    [75]
    Behrendt A, Dierking W, Fahrbach E, et al. Sea ice draft in the Weddell Sea, measured by upward looking sonars. Earth Syst. Sci. Data, 2013; 5(1): 209−226 DOI: 10.5194/essd-5-209-2013
    [76]
    Fissel D B, Chave R A J, Clarke M, et al. Advances in moored upward looking sonar systems for long term measurement of Arctic ice and oceanography. OCEANS 2013, IEEE, San Diego, USA, 2013: 1−7
    [77]
    Ross E, Fissel D, Marko J, et al. An improved method of extremal value analysis of Arctic Sea ice thickness derived from Upward Looking Sonar ice data. OTC Arctic Technology Conference, OTC, Houston, TX, USA, 2012: OTC-23811-MS
    [78]
    Wadhams P. The use of autonomous underwater vehicles to map the variability of under-ice topography. Ocean Dyn., 2012; 62(3): 439−447 DOI: 10.1007/s10236-011-0509-1
    [79]
    Wadhams P, Krogh B. Operational history and development plans for the use of AUVs and UAVs to map sea ice topography. Polar Sci., 2019; 21: 195−203 DOI: 10.1016/j.polar.2019.07.004
  • Related Articles

    [1]LV Chenglei, WU Xintao, CHEN Huifang, XIE Lei. Under-ice acoustic channel estimation method based on adaptive sparsity orthogonal matching pursuit[J]. ACTA ACUSTICA, 2025, 50(3): 757-767. DOI: 10.12395/0371-0025.2024394
    [2]LIANG Yaokun, YU Hua, LI Zhongyuan, JI Fei, CHEN Yankun. A joint estimation method of under-ice acoustic channel and impulsive noise based on multi-task sparse Bayesian learning[J]. ACTA ACUSTICA, 2025, 50(3): 747-756. DOI: 10.12395/0371-0025.2024428
    [3]LÜ Yujiao, HUANG Haining, ZHANG Yangfan, CHI Cheng. Norm-constraining beamforming amid under-ice non-Gaussian noise[J]. ACTA ACUSTICA, 2024, 49(2): 286-297. DOI: 10.12395/0371-0025.2022137
    [4]ZHAO Chunpeng, LIANG Guolong, QIU Longhao, FU Jin, LIU Guolong. Interference characteristics and observability of acoustic field radiated by a high-speed vertical moving source[J]. ACTA ACUSTICA, 2023, 48(6): 1081-1097. DOI: 10.12395/0371-0025.2022067
    [5]HONG Danyang, WANG Wei, YIN Li, PU Zhanqing, ZHOU Chengyang, HUANG Haining. An improved temporal multiple sparse Bayesian learning under-ice acoustic channel estimation method[J]. ACTA ACUSTICA, 2022, 47(5): 591-602. DOI: 10.15949/j.cnki.0371-0025.2022.05.013
    [6]ZHU Guangping, YIN Jingwei, CHEN Wenjian, HU Siwei, ZHOU Huanling, GUO Longxiang. Modeling and characterizing the typical under-ice acoustic channel for the Arctic[J]. ACTA ACUSTICA, 2017, 42(2): 152-158. DOI: 10.15949/j.cnki.0371-0025.2017.02.003
    [7]YIN Jingwei, ZHANG Xiao, ZHU Guangping, TANG Shengyu, SUN Hui. Parametric array differential Pattern time delay shift coding underwater acoustic communication in the under-ice environment[J]. ACTA ACUSTICA, 2017, 42(1): 48-52. DOI: 10.15949/j.cnki.0371-0025.2017.01.006
    [8]LI Sheng, YU Danzhu. Controllability and observability measures of structural vibration and acoustic radiation[J]. ACTA ACUSTICA, 2016, 41(6): 820-832. DOI: 10.15949/j.cnki.0371-0025.2016.06.005
    [9]ZHANG Shuying, LI Yunwu. A theoretical analysis of acoustic suspended sediment observation[J]. ACTA ACUSTICA, 1999, 24(3): 269-274. DOI: 10.15949/j.cnki.0371-0025.1999.03.005
    [10]TU YAN. THE THEORETICAL AND OBSERVED DISPERSION OF ACOUSTIC-GRAVITY WAVE IN THE ATMOSPHERE[J]. ACTA ACUSTICA, 1983, 8(4): 227-235. DOI: 10.15949/j.cnki.0371-0025.1983.04.005
  • Cited by

    Periodical cited type(4)

    1. 李天星,莫亚枭,苏林,胡园,曹建国,马力. 基于函数-特征子空间的水下高分辨方位估计算法. 声学学报. 2024(05): 956-966 . 本站查看
    2. LI Tianxing,MO Yaxiao,SU Lin,HU Yuan,CAO Jianguo,MA Li. The high-resolution underwater azimuth estimation algorithm for function-feature subspaces. Chinese Journal of Acoustics. 2024(04): 468-486 .
    3. 夏麾军. 基于卡尔曼滤波器的阵列噪声抑制方法. 舰船电子工程. 2022(07): 44-47+68 .
    4. 时胜国,李赢,杨德森,朱中锐. 中心对称声矢量圆阵的相干双声源方位估计方法. 哈尔滨工程大学学报. 2019(07): 1187-1193 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (325) PDF downloads (135) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return