EI / SCOPUS / CSCD 收录

中文核心期刊

YANG Zehui, NIE Weihang, CHENG Gaofeng, WU Yaozhen, XU Ji, ZHAO Qingwei, YAN Yonghong. Total variation constrained deconvolved conventional beamforming algorithm for azimuthal spectral estimation[J]. ACTA ACUSTICA, 2025, 50(1): 68-76. DOI: 10.12395/0371-0025.2023173
Citation: YANG Zehui, NIE Weihang, CHENG Gaofeng, WU Yaozhen, XU Ji, ZHAO Qingwei, YAN Yonghong. Total variation constrained deconvolved conventional beamforming algorithm for azimuthal spectral estimation[J]. ACTA ACUSTICA, 2025, 50(1): 68-76. DOI: 10.12395/0371-0025.2023173

Total variation constrained deconvolved conventional beamforming algorithm for azimuthal spectral estimation

More Information
  • PACS: 
    • 43.30  (Underwater sound)
    • 43.60  (Acoustic signal processing)
  • Received Date: August 15, 2023
  • Revised Date: October 27, 2023
  • In order to enhance the stability of the deconvolved conventional beamforming (D-CBF) algorithm, reduce background noise levels in the azimuth spectrum, and improve processing gain, a total variation constrained deconvolved CBF (TVD-CBF) spatial spectrum estimation algorithm is proposed. The approach leverages the sparse prior of the source distribution by incorporating a total variation regularization term as a nonlinear constraint within the cost function. Consequently, spatial resolution is improved while the accumulation of noise and errors is suppressed, thereby enhancing solution stability. Simulation results demonstrate that the TVD-CBF algorithm significantly outperforms the D-CBF algorithm in terms of azimuthal directivity and resolution, exhibiting surperior performance in direction of arrival estimation. The effectiveness of the TVD-CBF algorithm is further validated through experiments on sea trial data.

  • [1]
    Liu W, Haardt M, Greco M S, et al. Twenty-five years of sensor array and multichannel signal processing: A review of progress to date and potential research directions. IEEE Signal Process. Mag., 2023; 40(4): 80−91 DOI: 10.1109/MSP.2023.3258060
    [2]
    杨龙, 杨益新, 汪勇, 等. 一种改进的稀疏近似最小方差DOA估计算法研究. 声学学报, 2016; 41(4): 465−476 DOI: 10.15949/j.cnki.0371-0025.2016.04.003
    [3]
    Yang Z, Xie L, Zhang C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process., 2013; 61(1): 38−43 DOI: 10.1109/TSP.2012.2222378
    [4]
    Huang H, Yang J, Huang H, et al. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Trans. Veh. Technol., 2018; 67(9): 8549−8560 DOI: 10.1109/TVT.2018.2851783
    [5]
    Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969; 57(8): 1408−1418 DOI: 10.1109/PROC.1969.7278
    [6]
    Ganz M W, Moses R L, Wilson S L. Convergence of the SMI and the diagonally loaded SMI algorithms with weak interference (adaptive array). IEEE Trans. Antennas Propag., 1990; 38(3): 394−399 DOI: 10.1109/8.52247
    [7]
    Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 1986; 34(3): 276−280 DOI: 10.1109/TAP.1986.1143830
    [8]
    Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process., 1989; 37(7): 984−995 DOI: 10.1109/29.32276
    [9]
    Dai J, Bao X, Xu W, et al. Root sparse Bayesian learning for off-grid DOA estimation. IEEE Signal Process. Lett., 2017; 24(1): 46−50 DOI: 10.1109/LSP.2016.2636319
    [10]
    Zhang Y, Yang Y, Yang L, et al. Root sparse asymptotic minimum variance for off-grid direction-of-arrival estimation. Signal Process., 2019; 163: 225−231 DOI: 10.1016/j.sigpro.2019.05.024
    [11]
    Sun D, Jia Z, Teng T, et al. Robust high-resolution direction-of-arrival estimation method using DenseBlock-based U-net. J. Acoust. Soc. Am., 2022; 151(5): 3426−3436 DOI: 10.1121/10.0011470
    [12]
    Rao B D, Hari K V S. Performance analysis of root-Music. IEEE Trans. Acoust. Speech Signal Process., 1989; 37(12): 1939−1949 DOI: 10.1109/29.45540
    [13]
    Pesavento M, Gershman A B, Haardt M. Unitary root-MUSIC with a real-valued eigendecomposition: A theoretical and experimental performance study. IEEE Trans. Signal Process., 2000; 48(5): 1306−1314 DOI: 10.1109/78.839978
    [14]
    谢磊, 孙超, 刘雄厚, 等. 解卷积的多重信号分类算法方位谱低背景处理方法. 声学学报, 2018; 43(4): 516−525 DOI: 10.15949/j.cnki.0371-0025.2018.04.011
    [15]
    Yang T C. Deconvolved conventional beamforming for a horizontal line array. IEEE J. Oceanic Eng., 2018; 43(1): 160−172 DOI: 10.1109/JOE.2017.2680818
    [16]
    Yang T C. Performance Analysis of superdirectivity of circular arrays and implications for sonar systems. IEEE J. Oceanic Eng., 2019; 44(1): 156−166 DOI: 10.1109/JOE.2018.2801144
    [17]
    Richardson W H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 1972; 62(1): 55−59 DOI: 10.1364/JOSA.62.000055
    [18]
    Lucy L B. An iterative technique for the rectification of observed distributions. Astron. J., 1974; 79(6): 745−754 DOI: 10.1086/111605
    [19]
    Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992; 60(1-4): 259−268 DOI: 10.5555/142269.142312
    [20]
    Wang M, Wang Q, Chanussot J, et al. l0-l1 hybrid total variation regularization and its applications on hyperspectral image mixed noise removal and compressed sensing. IEEE Trans. Geosci. Remote Sens., 2021; 59(9): 7695−7710 DOI: 10.1109/TGRS.2021.3055516
    [21]
    Phan T D K. A weighted total variation based image denoising model using mean curvature. Optik, 2020; 217: 164940 DOI: 10.1016/j.ijleo.2020.164940
    [22]
    许秋滨. 图像去噪的ROF模型的几个新的算法. 应用数学学报, 2019; 42(4): 470−481 DOI: 10.12387/C2019039
    [23]
    Liu J, Sun Y, Xu X, et al. Image restoration using total variation regularized deep image prior. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Brighton, UK, 2019: 7715–7719
    [24]
    陈筱月, 马晓川, 李璇, 等. 混合1范数与全变分约束下的海底目标探测. 声学学报, 2023; 48(4): 632−645 DOI: 10.15949/j.cnki.0371-0025.2023.04.010
    [25]
    Wu L, Liu Z M, Huang Z T. Deep convolution network for direction of arrival estimation with sparse prior. IEEE Signal Process. Lett., 2019; 26(11): 1688−1692 DOI: 10.1109/LSP.2019.2945115
    [26]
    周昌雄, 苏品刚, 颜廷秦, 等. 应用改进自蛇模型和L-R算法恢复毫米波图像. 激光与红外, 2012; 42(4): 468−472 DOI: 10.3969/j.issn.1001-5078.2012.04.025
  • Related Articles

    [1]CUI Wenting, MEI Jidan, SUN Dajun, HUANG Tianfeng, WANG Biying. A broadband wavenumber domain deconvolution beamforming grating lobe suppression method for sparse linear arrays[J]. ACTA ACUSTICA, 2025, 50(1): 109-120. DOI: 10.12395/0371-0025.2023085
    [2]LYU Jiahui, LUO Zailei, SHEN Tongsheng. Target localization for deep-sea vertical line array in the direct-arrival zone using deconvolution method[J]. ACTA ACUSTICA, 2024, 49(4): 636-646. DOI: 10.12395/0371-0025.2023056
    [3]QU Songyue, GUO Lianghao, DONG Ge. Direction of arrival estimation method jointing channel randomly shielding and deconvolution for a horizontal array[J]. ACTA ACUSTICA, 2024, 49(1): 1-15. DOI: 10.12395/0371-0025.2022159
    [4]WANG Cheng, ZHU Guangping, YIN Jingwei, TANG Shengyu. Target highlight extraction method based on fractional deconvolution[J]. ACTA ACUSTICA, 2023, 48(4): 715-723. DOI: 10.15949/j.cnki.0371-0025.2023.04.005
    [5]WANG Yujie, LI Zigao, CHI Cheng, JU Donghao, ZHANG Chunhua. Single vector hydrophone time-domain deconvolution bearing estimation method based on combined second-order statistics[J]. ACTA ACUSTICA, 2023, 48(4): 656-667. DOI: 10.15949/j.cnki.0371-0025.2023.04.003
    [6]CHEN Xiaoyue, MA Xiaochuan, LI Xuan, PEI Xingyuan, FU Yubin. Seabed target detection under the constraint of mixed 1-norm and total variation[J]. ACTA ACUSTICA, 2023, 48(4): 632-645. DOI: 10.15949/j.cnki.0371-0025.2023.04.010
    [7]SHANG Zhigang, QU Xinghao, QIAO Gang, HAO Chengpeng. Localizing mixed far- and near-field sources using beamforming deconvolution techniques[J]. ACTA ACUSTICA, 2023, 48(3): 447-458. DOI: 10.15949/j.cnki.0371-0025.2023.03.014
    [8]WANG Yujie, CHI Cheng, LI Yu, HUANG Haining. Array invariant-based passive localization in shallow water through deconvolution spatial processing[J]. ACTA ACUSTICA, 2022, 47(1): 45-52. DOI: 10.15949/j.cnki.0371-0025.2022.01.005
    [9]XIE Lei, SUN Chao, LIU Xionghou, JIANG Guangyu, KONG Dezhi. Low noise background processing with a deconvolution method for the multiple signal classification azimuthal spectral estimation[J]. ACTA ACUSTICA, 2018, 43(4): 516-525. DOI: 10.15949/j.cnki.0371-0025.2018.04.011
    [10]ZHANG Hai-lan. ON VARIATIONAL PRINCIPLES OF A PIEZOFLECTRIC BODY[J]. ACTA ACUSTICA, 1985, 10(4): 223-230. DOI: 10.15949/j.cnki.0371-0025.1985.04.003

Catalog

    Article Metrics

    Article views (146) PDF downloads (68) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return