Citation: | YANG Zehui, NIE Weihang, CHENG Gaofeng, WU Yaozhen, XU Ji, ZHAO Qingwei, YAN Yonghong. Total variation constrained deconvolved conventional beamforming algorithm for azimuthal spectral estimation[J]. ACTA ACUSTICA, 2025, 50(1): 68-76. DOI: 10.12395/0371-0025.2023173 |
In order to enhance the stability of the deconvolved conventional beamforming (D-CBF) algorithm, reduce background noise levels in the azimuth spectrum, and improve processing gain, a total variation constrained deconvolved CBF (TVD-CBF) spatial spectrum estimation algorithm is proposed. The approach leverages the sparse prior of the source distribution by incorporating a total variation regularization term as a nonlinear constraint within the cost function. Consequently, spatial resolution is improved while the accumulation of noise and errors is suppressed, thereby enhancing solution stability. Simulation results demonstrate that the TVD-CBF algorithm significantly outperforms the D-CBF algorithm in terms of azimuthal directivity and resolution, exhibiting surperior performance in direction of arrival estimation. The effectiveness of the TVD-CBF algorithm is further validated through experiments on sea trial data.
[1] |
Liu W, Haardt M, Greco M S, et al. Twenty-five years of sensor array and multichannel signal processing: A review of progress to date and potential research directions. IEEE Signal Process. Mag., 2023; 40(4): 80−91 DOI: 10.1109/MSP.2023.3258060
|
[2] |
杨龙, 杨益新, 汪勇, 等. 一种改进的稀疏近似最小方差DOA估计算法研究. 声学学报, 2016; 41(4): 465−476 DOI: 10.15949/j.cnki.0371-0025.2016.04.003
|
[3] |
Yang Z, Xie L, Zhang C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process., 2013; 61(1): 38−43 DOI: 10.1109/TSP.2012.2222378
|
[4] |
Huang H, Yang J, Huang H, et al. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Trans. Veh. Technol., 2018; 67(9): 8549−8560 DOI: 10.1109/TVT.2018.2851783
|
[5] |
Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 1969; 57(8): 1408−1418 DOI: 10.1109/PROC.1969.7278
|
[6] |
Ganz M W, Moses R L, Wilson S L. Convergence of the SMI and the diagonally loaded SMI algorithms with weak interference (adaptive array). IEEE Trans. Antennas Propag., 1990; 38(3): 394−399 DOI: 10.1109/8.52247
|
[7] |
Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 1986; 34(3): 276−280 DOI: 10.1109/TAP.1986.1143830
|
[8] |
Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process., 1989; 37(7): 984−995 DOI: 10.1109/29.32276
|
[9] |
Dai J, Bao X, Xu W, et al. Root sparse Bayesian learning for off-grid DOA estimation. IEEE Signal Process. Lett., 2017; 24(1): 46−50 DOI: 10.1109/LSP.2016.2636319
|
[10] |
Zhang Y, Yang Y, Yang L, et al. Root sparse asymptotic minimum variance for off-grid direction-of-arrival estimation. Signal Process., 2019; 163: 225−231 DOI: 10.1016/j.sigpro.2019.05.024
|
[11] |
Sun D, Jia Z, Teng T, et al. Robust high-resolution direction-of-arrival estimation method using DenseBlock-based U-net. J. Acoust. Soc. Am., 2022; 151(5): 3426−3436 DOI: 10.1121/10.0011470
|
[12] |
Rao B D, Hari K V S. Performance analysis of root-Music. IEEE Trans. Acoust. Speech Signal Process., 1989; 37(12): 1939−1949 DOI: 10.1109/29.45540
|
[13] |
Pesavento M, Gershman A B, Haardt M. Unitary root-MUSIC with a real-valued eigendecomposition: A theoretical and experimental performance study. IEEE Trans. Signal Process., 2000; 48(5): 1306−1314 DOI: 10.1109/78.839978
|
[14] |
谢磊, 孙超, 刘雄厚, 等. 解卷积的多重信号分类算法方位谱低背景处理方法. 声学学报, 2018; 43(4): 516−525 DOI: 10.15949/j.cnki.0371-0025.2018.04.011
|
[15] |
Yang T C. Deconvolved conventional beamforming for a horizontal line array. IEEE J. Oceanic Eng., 2018; 43(1): 160−172 DOI: 10.1109/JOE.2017.2680818
|
[16] |
Yang T C. Performance Analysis of superdirectivity of circular arrays and implications for sonar systems. IEEE J. Oceanic Eng., 2019; 44(1): 156−166 DOI: 10.1109/JOE.2018.2801144
|
[17] |
Richardson W H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 1972; 62(1): 55−59 DOI: 10.1364/JOSA.62.000055
|
[18] |
Lucy L B. An iterative technique for the rectification of observed distributions. Astron. J., 1974; 79(6): 745−754 DOI: 10.1086/111605
|
[19] |
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992; 60(1-4): 259−268 DOI: 10.5555/142269.142312
|
[20] |
Wang M, Wang Q, Chanussot J, et al. l0-l1 hybrid total variation regularization and its applications on hyperspectral image mixed noise removal and compressed sensing. IEEE Trans. Geosci. Remote Sens., 2021; 59(9): 7695−7710 DOI: 10.1109/TGRS.2021.3055516
|
[21] |
Phan T D K. A weighted total variation based image denoising model using mean curvature. Optik, 2020; 217: 164940 DOI: 10.1016/j.ijleo.2020.164940
|
[22] |
许秋滨. 图像去噪的ROF模型的几个新的算法. 应用数学学报, 2019; 42(4): 470−481 DOI: 10.12387/C2019039
|
[23] |
Liu J, Sun Y, Xu X, et al. Image restoration using total variation regularized deep image prior. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Brighton, UK, 2019: 7715–7719
|
[24] |
陈筱月, 马晓川, 李璇, 等. 混合1范数与全变分约束下的海底目标探测. 声学学报, 2023; 48(4): 632−645 DOI: 10.15949/j.cnki.0371-0025.2023.04.010
|
[25] |
Wu L, Liu Z M, Huang Z T. Deep convolution network for direction of arrival estimation with sparse prior. IEEE Signal Process. Lett., 2019; 26(11): 1688−1692 DOI: 10.1109/LSP.2019.2945115
|
[26] |
周昌雄, 苏品刚, 颜廷秦, 等. 应用改进自蛇模型和L-R算法恢复毫米波图像. 激光与红外, 2012; 42(4): 468−472 DOI: 10.3969/j.issn.1001-5078.2012.04.025
|