Citation: | ZHOU Pengxi, HU Tao, WANG Zhen, YANG Fujin. Deep-sea sound-speed profile estimation and prediction of sound propagation based on sparse depth sensing using towed temperature-depth sensors[J]. ACTA ACUSTICA, 2025, 50(3): 622-633. DOI: 10.12395/0371-0025.2023294 |
Aiming at the problem of obtaining the sound speed profile in the deep sea, a method for orthogonal basis function extraction of deep-sea sound speed profiles is proposed based on the deep-sea hydrodynamic normal modes, which is able to reconstruct the sound speed profiles with less sample data compared to the empirical orthogonal functions. In addition, by combining the extracted orthogonal basis functions of the sound speed profiles with a limited number of temperature-depth measurements from the towed temperature-depth sensors, the spatial non-uniform sound speed profiles are estimated, which reduces the cost of measurements of the sound speed profiles. The method was validated by simulating the horizontal non-uniform variation of the deep-sea upper temperature profile. The sea trial data show that the average error between the reconstructed results of the sound speed profile and the measured results from the expendable bathythermographs is about 1 m/s, and that the deep-sea sound propagation losses predicted using the reconstructed results are in good agreement with the experimental data.
[1] |
张兆英. CTD测量技术的现状与发展. 海洋技术, 2003; 22(4): 105−110 DOI: 10.3969/j.issn.1003-2029.2003.04.026
|
[2] |
张平, 唐锁夫, 屈科, 等. 国产XBT海上测试及实际使用效果分析. 声学技术, 2012; 31(6): 570−573 DOI: 10.3969/j.issn1000-3630.2012.06.007
|
[3] |
Soares C, Jesus S M, Coelho E. Environmental inversion using high-resolution matched-field processing. J. Acoust. Soc. Am., 2007; 122(6): 3391−3404 DOI: 10.1121/1.2799476
|
[4] |
Lin T, Michalopoulou Z H. Sound speed estimation and source localization with linearization and particle filtering. J. Acoust. Soc. Am., 2014; 135(3): 1115−1126 DOI: 10.1121/1.4864787
|
[5] |
Munk W H, Wunsch C. Ocean acoustic tomography: A scheme for large scale monitoring. Deep-Sea Res., 1979; 26: 123−161 DOI: 10.1016/0198-0149(79)90073-6
|
[6] |
Shang E C. Ocean acoustic tomography based on adiabatic mode theory. J. Acoust. Soc. Am., 1989; 85(4): 1531−1537 DOI: 10.1121/1.397355
|
[7] |
Skarsoulis E K, Athanassoulis G A. Ocean acoustic tomography based on peak arrivals. J. Acoust. Soc. Am., 1996; 100(2): 797−813 DOI: 10.1121/1.416212
|
[8] |
Taroudakis M I, Markaki M G. On the use of matched-field processing and hybrid algorithms for vertical slice tomography. J. Acoust. Soc. Am., 1997; 102(2): 885−895 DOI: 10.1121/1.419955
|
[9] |
Tolstoy A. Sensitivity of matched field processing to sound-speed profile mismatch for vertical arrays in a deep water Pacific environment. J. Acoust. Soc. Am., 1989; 85(6): 2394−2404 DOI: 10.1121/1.397787
|
[10] |
沈远海, 马远良, 屠庆平, 等. 浅水声速剖面用经验正交函数(EOF)表示的可行性研究. 应用声学, 1999; 18(2): 21−25 DOI: 10.3969/j.issn.1000-310X.1999.02.005
|
[11] |
沈远海, 马远良, 屠庆平, 等. 浅海声速剖面的反演方法与实验验证. 西北工业大学学报, 2000; 18(2): 212−215 DOI: 10.3969/j.issn.1000-2758.2000.02.010
|
[12] |
唐俊峰, 杨士莪. 由传播时间反演海水中的声速剖面. 哈尔滨工程大学学报, 2006; 27(5): 733−736 DOI: 10.3969/j.issn.1006-7043.2006.05.022
|
[13] |
张维, 杨士莪, 黄益旺, 等. 基于爆炸声传播时间的声速剖面反演. 振动与冲击, 2012; 31(23): 6−11 DOI: 10.3969/j.issn.1000-3835.2012.23.002
|
[14] |
何利, 李整林, 彭朝晖, 等. 南海北部海水声速剖面声学反演. 中国科学: 物理学 力学 天文学, 2011; 41: 49−57 DOI: 10.1360/132010-907
|
[15] |
Jensen J K, Hjelmervik K T, Østenstad P. Finding acoustically stable areas through empirical orthogonal function (EOF) classification. IEEE J. Oceanic Eng., 2012; 37(1): 103−111 DOI: 10.1109/JOE.2011.2168669
|
[16] |
周士弘, 张茂有, 周曰鹏. 海洋声速场的经验正交函数描述及声速剖面预报. 海洋通报, 1999; 18(5): 27−34 DOI: 10.3969/j.issn.1001-6392.1999.05.004
|
[17] |
Tolstoy A. Volumetric (tomographic) three-dimensional geo-acoustic inversion in shallow water. J. Acoust. Soc. Am., 2008; 124(5): 2793−2804 DOI: 10.1121/1.2981038
|
[18] |
苏林, 任群言, 庞立臣, 等. 强非线性时间演化声速剖面的序贯反演. 声学学报, 2019; 44(4): 452−462 DOI: 10.15949/j.cnki.0371-0025.2019.04.006
|
[19] |
Casagrande G, Stéphan Y, Varnas A C W, et al. A novel empirical orthogonal function (EOF)-based methodology to study the internal wave effects on acoustic propagation. IEEE J. Oceanic Eng., 2011; 36(4): 745−759 DOI: 10.1109/JOE.2011.2161158
|
[20] |
李建龙, 徐文, 金丽玲, 等. 浅海环境下数据同化声层析方法研究. 声学学报, 2012; 37(1): 10−17 DOI: 10.15949/j.cnki.037-0025.2012.01.002
|
[21] |
屈科, 朴胜春, 朱凤芹. 一种基于内潮动力特征的浅海声速剖面构建新方法. 物理学报, 2019; 68(12): 124302 DOI: 10.7498/aps.68.20181867
|
[22] |
Davis R G. Predictabillity of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 1976; 6(3): 249−266 DOI: 10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
|
[23] |
王臻. 浅海内波特征与声场起伏对应关系研究. 博士学位论文, 北京: 中国科学院声学研究所, 2022
|
[24] |
宋文华, 胡涛, 郭圣明, 等. 一种声速剖面展开的正交基函数获取方法. 声学学报, 2014; 39(1): 11−18 DOI: 10.15949/j.cnki.0371-0025.2014.01.001
|
[25] |
Yang T C, Yoo K. Internal wave spectrum in shallow water: Measurement and comparison with the Garrett-Munk model. IEEE J. Oceanic Eng., 1999; 24(3): 333−344 DOI: 10.1109/48.775295
|
[26] |
Del Grosso V A. New equation for the speed of sound in natural water (with comparisons to other equations). J. Acoust. Soc. Am., 1974; 56(4): 1084−1974 DOI: 10.1121/1.1903388
|