Citation: | JING Qiulan, XIAO Youhong, YU Liang. Simultaneous eduction of acoustic impedance and in-duct flow velocity for the fused impedance model under the grazing flow condition[J]. ACTA ACUSTICA, 2025, 50(2): 287-298. DOI: 10.12395/0371-0025.2024305 |
For solving the problem of abrupt changes of the acoustic liner impedance at certain frequencies due to the measurement errors in the flow/acoustic field of the grazing flow tube in the acoustic liner impedance inverse eduction method, an improved acoustic impedance eduction method is proposed to synchronize and accurately extract the acoustic liner impedance and flow velocity inside the flow tube. Firstly, the frequency domain acoustic impedance model is introduced into the mode matching method to establish the forward prediction model of the duct acoustic field under the grazing flow condition. Then, a full-band objective error function containing the unknown parameters of the acoustic impedance model and the in-duct flow velocity is constructed by combining the theoretically predicted acoustic field with the measured acoustic field inside the duct. Finally, the interior point method is utilized to optimize the variables to be solved. The validation results of the NASA baseline dataset of the grazing flow tube test with the CT57 acoustic liner show that the proposed method can realize the simultaneous eduction of the acoustic impedance and the flow velocity inside the flow duct while guaranteeing the computational efficiency. The optimized acoustic impedance curve maintains good continuity, and the optimization error of the flow velocity is kept within 10% under the condition of
[1] |
乔渭阳. 航空发动机气动声学. 北京: 北京航空航天大学出版社, 2010: 1−8
|
[2] |
Guérin S, Holewa A. Fan tonal noise from aircraft aeroengines with short intake: A study at approach. Int. J. Aeroacoust., 2018; 17(6-8): 600−623 DOI: 10.1177/1475472X18789001
|
[3] |
Burguburu S, Le Pape A. Improved aerodynamic design of turbomachinery bladings by numerical optimization. Aerosp. Sci. Technol., 2003; 7(4): 277−287 DOI: 10.1016/S1270-9638(02)00010-X
|
[4] |
Nark D M, Jones M G, Sutliff D L. Modeling of broadband liners applied to the advanced noise control fan. 21st AIAA/CEAS Aeroacoustics Conference, AIAA, Dallas, TX, USA, 2015: 2693
|
[5] |
Neise W, Enghardt L. Technology approach to aero engine noise reduction. Aerosp. Sci. Technol., 2003; 7(5): 352−363 DOI: 10.1016/S1270-9638(03)00027-0
|
[6] |
伍赛特. 民用航空发动机降噪技术研究及展望. 机电产品开发与创新, 2019; 32(4): 55−57 DOI: 10.3969/j.issn.1002-6673.2019.04.019
|
[7] |
Ma P, Wang H, Li D, et al. Passive acoustic liners for aero-engine noise control: A review. Mech. Adv. Mater. Struct., 2024; 31(30): 12834−12849 DOI: 10.1080/15376494.2024.2329309
|
[8] |
Aurégan Y, Starobinski R, Pagneux V. Influence of grazing flow and dissipation effects on the acoustic boundary conditions at a lined wall. J. Acoust. Soc. Am., 2001; 109(1): 59−64 DOI: 10.1121/1.1331678
|
[9] |
邱祥海, 杜林, 孙晓峰. 航空声衬声阻抗实验提取技术研究进展. 实验流体力学, 2024; 38(3): 1−19 DOI: 10.11729/syltlx20230060
|
[10] |
Dean P D. An in situ method of wall acoustic impedance measurement in flow ducts. J. Sound Vib., 1974; 34(1): 97−130 DOI: 10.1016/S0022-460X(74)80357-3
|
[11] |
王光发, 景晓东, 孙晓峰. 现场测量管道声衬声阻抗的双传声器法实验研究. 航空动力学报, 2008; 23(1): 70−74 DOI: 10.13224/j.cnki.jasp.2008.01.003
|
[12] |
燕群, 薛东文, 高翔, 等. 飞机短舱声衬声学性能实验技术. 航空学报, 2022; 43(6): 228−237 DOI: 10.7527/S1000-6893.2022.26810
|
[13] |
杨嘉丰, 薛东文, 李卓瀚, 等. 切向流条件下短舱单/双自由度声衬实验. 航空学报, 2020; 41(11): 337−347 DOI: 10.7527/S1000-6893.2020.23860
|
[14] |
Jing X, Peng S, Sun X. A straightforward method for wall impedance eduction in a flow duct. J. Acoust. Soc. Am., 2008; 124(1): 227−234 DOI: 10.1121/1.2932256
|
[15] |
Jing X, Peng S, Wang L, et al. Investigation of straightforward impedance eduction in the presence of shear flow. J. Sound Vib., 2015; 335: 89−104 DOI: 10.1016/j.jsv.2014.08.031
|
[16] |
Qiu X, Yang J, Jing X, et al. Mirror-based multimodal straightforward method for impedance eduction using a zigzag array. J. Sound Vib., 2024; 576: 118237 DOI: 10.1016/j.jsv.2024.118237
|
[17] |
陈凌峰, 韩云霄, 冯博宇, 等. 考虑剪切流的航空声衬三维阻抗直接提取方法. 航空学报, 2024; 45(23): 630333 DOI: 10.7527/S1000-6893.2024.30333
|
[18] |
Jones M, Watson W, Parrott T. Benchmark data for evaluation of aeroacoustic propagation codes with grazing flow. 11th AIAA/CEAS Aeroacoustics Conference, AIAA, California, USA, 2005: 2853
|
[19] |
Weng C, Schulz A, Ronneberger D, et al. Flow and viscous effects on impedance eduction. AIAA J., 2018; 56(3): 1118−1132 DOI: 10.2514/1.J055838
|
[20] |
Zhang P, Huang Y, Yang Z, et al. Effect of source direction on liner impedance eduction with consideration of shear flow. Appl. Acoust., 2021; 183: 108297 DOI: 10.1016/j.apacoust.2021.108297
|
[21] |
Buot de l'Épine Y, Chazot J D, Ville J M. Bayesian identification of acoustic impedance in treated ducts. J. Acoust. Soc. Am., 2015; 138(1): EL114−EL119 DOI: 10.1121/1.4923013
|
[22] |
Troian R, Dragna D, Bailly C, et al. Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow. J. Sound Vib., 2017; 392: 200−216 DOI: 10.1016/j.jsv.2016.10.014
|
[23] |
Spillere A M N, Medeiros A A, Cordioli J A. An improved impedance eduction technique based on impedance models and the mode matching method. Appl. Acoust., 2018; 129: 322−334 DOI: 10.1016/j.apacoust.2017.08.014
|
[24] |
Jones M, Watson W, Nark D, et al. A review of acoustic liner experimental characterization at NASA Langley. NASA/TP-2020-220583, 2020
|
[25] |
Zhang P, Yang C, Huang Y. An improved algorithm for liner impedance eduction in low signal-to-noise ratio flow duct. Int. J. Aeroacoust., 2022; 21(3-4): 168−189 DOI: 10.1177/1475472X221093710
|
[26] |
Myers M K. On the acoustic boundary condition in the presence of flow. J. Sound Vib., 1980; 71(3): 429−434 DOI: 10.1016/0022-460X(80)90424-1
|
[27] |
Sun X, Du L, Yang V. A homotopy method for determining the eigenvalues of locally or non-locally reacting acoustic liners in flow ducts. J. Sound Vib., 2007; 303(1-2): 277−286 DOI: 10.1016/j.jsv.2007.01.020
|
[28] |
Gabard G, Astley R J. A computational mode-matching approach for sound propagation in three dimensional ducts with flow. J. Sound Vib., 2008; 315(4): 1103−1124 DOI: 10.1016/j.jsv.2008.02.015
|
[29] |
Elnady T, Bodén H, Elhadidi B. Validation of an inverse semi-analytical technique to educe liner impedance. AIAA J., 2009; 47(12): 2836−2844 DOI: 10.2514/1.41647
|
[30] |
Yang C, Fang Y, Zhao C, et al. On modeling the sound propagation through a lined duct with a modified Ingard-Myers boundary condition. J. Sound Vib., 2018; 424: 173−191 DOI: 10.1016/j.jsv.2018.03.022
|
[31] |
Rienstra S. Impedance models in time domain, including the extended helmholtz resonator model. 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), AIAA, Massachusetts, USA, 2006: 2686
|
[32] |
Byrd R H, Gilbert J C, Nocedal J. A trust region method based on interior point techniques for nonlinear programming. Math. Program., 2000; 89(1): 149−185 DOI: 10.1007/PL00011391
|
[33] |
Jones M G, Stiede P E. Comparison of methods for determining specific acoustic impedance. J. Acoust. Soc. Am., 1997; 101(5): 2694−2704 DOI: 10.1121/1.418558
|
[34] |
Özyörük Y, Long L N, Jones M G. Time-domain numerical simulation of a flow-impedance tube. J. Comput. Phys., 1998; 146(1): 29−57 DOI: 10.1006/jcph.1998.5919
|
[35] |
Nemirovski A S, Todd M J. Interior-point methods for optimization. Acta Numer., 2008; 17: 191−234 DOI: 10.1017/S0962492906370018
|
[36] |
Li X D, Richter C, Thiele F. Time-domain impedance boundary conditions for surfaces with subsonic mean flows. J. Acoust. Soc. Am., 2006; 119(5): 2665−2676 DOI: 10.1121/1.2191610
|