EI / SCOPUS / CSCD 收录

中文核心期刊

MENG Jin-sheng, GUAN Dian-hua. ACOUSTICAL CLASSIFICATION OF SEA FLOOR SEDIMENTS[J]. ACTA ACUSTICA, 1982, 7(6): 337-343. DOI: 10.15949/j.cnki.0371-0025.1982.06.001
Citation: MENG Jin-sheng, GUAN Dian-hua. ACOUSTICAL CLASSIFICATION OF SEA FLOOR SEDIMENTS[J]. ACTA ACUSTICA, 1982, 7(6): 337-343. DOI: 10.15949/j.cnki.0371-0025.1982.06.001

ACOUSTICAL CLASSIFICATION OF SEA FLOOR SEDIMENTS

More Information
  • Received Date: June 17, 1981
  • Available Online: August 22, 2022
  • This paper discusses the classification of seabed sediment using normally incident, high frequency sound pules. A number of investigators used reflectivity of sound on the sea bottom and some other quantities as features for classification of sediment types. We suggest a new feature which is independent upon reflectivity and roughness of seabed. Our feature is extracted from relative form of echo envelope, it strongly correlates to attenuation of sound in sediments. The attenuation of sound is nearly proportional to frequency and at our frequency (120 kHz) the attenuation in different sediments varies in the range of about tenfold. Therefore we think the attenuation is a good feature for classification. In order to avoid the influence of surface backscattering, we used a directive transducer put near to the bottom. In laboratory a Bayes classifier was carried out by computer, and a fairly high success rate has achieved.
  • Related Articles

    [1]ZHAO Mei, HU Zhangqing. Single parameter inversion and seabed sediment classification in frequency domain[J]. ACTA ACUSTICA, 2021, 46(6): 1124-1131. DOI: 10.15949/j.cnki.0371-0025.2021.06.031
    [2]ZOU Dapeng, LÜ Hengsheng, KAN Guangming, LIU Wei, XIAO Tibing. Environmental factors affecting acoustic velocity of seafloor surface sediments[J]. ACTA ACUSTICA, 2021, 46(2): 227-236. DOI: 10.15949/j.cnki.0371-0025.2021.02.007
    [3]ZHENG Guangying, HUANG Yiwang, HUA Jian. Reflection of acoustic waves at a water-gassy sediment interface[J]. ACTA ACUSTICA, 2018, 43(6): 961-967. DOI: 10.15949/j.cnki.0371-0025.2018.06.011
    [4]ZOU Dapeng, LIU Wei, LONG Jianjun. Relationship of sound speeds between compressional wave and shear wave of seafloor sediments[J]. ACTA ACUSTICA, 2018, 43(6): 951-960. DOI: 10.15949/j.cnki.0371-0025.2018.06.010
    [5]ZOU Dapeng. Relationship between the sound speed ratio of the compressional wave and the physical characteristics of seafloor sediments[J]. ACTA ACUSTICA, 2018, 43(1): 41-51. DOI: 10.15949/j.cnki.0371-0025.2018.01.005
    [6]YU Shengqi, HUANG Yiwang, LIU Baohua, WANG Fei, ZHENG Guangying. A wide-band method for sound speed and attenuation measurement in sediments[J]. ACTA ACUSTICA, 2015, 40(5): 682-694. DOI: 10.15949/j.cnki.0371-0025.2015.05.009
    [7]LONG Jianjun, LI Ganxian. Theoretical relations between sound velocity and physical-mechanical properties for seafloor sediments[J]. ACTA ACUSTICA, 2015, 40(3): 462-468. DOI: 10.15949/j.cnki.0371-0025.2015.03.014
    [8]LI Zhenglin, WANG Yaojun, MA Li, GAO Tianfu. Effects of sediment parameters on the low frequency acoustic wave propagation in shallow water[J]. ACTA ACUSTICA, 2000, 25(3): 242-247. DOI: 10.15949/j.cnki.0371-0025.2000.03.008
    [9]WANG Zhengyin, MA Yuanliang, G. Gimenez D. Vray. Classification of lake bottom sediments using a wideband active sonar system[J]. ACTA ACUSTICA, 1996, 21(S1): 517-524. DOI: 10.15949/j.cnki.0371-0025.1996.S1.015
    [10]TANG Ying-wu. Reflection of acoustic waves from marine sediment[J]. ACTA ACUSTICA, 1994, 19(4): 278-289. DOI: 10.15949/j.cnki.0371-0025.1994.04.005

Catalog

    Article Metrics

    Article views (48) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return