EI / SCOPUS / CSCD 收录

中文核心期刊

MAA Dah-You. Theory and nonlinearity of thermoacoustics Ⅱ. Nonlinear sound wavs in a thermoacostic tube[J]. ACTA ACUSTICA, 1999, 24(5): 449-462. DOI: 10.15949/j.cnki.0371-0025.1999.05.001
Citation: MAA Dah-You. Theory and nonlinearity of thermoacoustics Ⅱ. Nonlinear sound wavs in a thermoacostic tube[J]. ACTA ACUSTICA, 1999, 24(5): 449-462. DOI: 10.15949/j.cnki.0371-0025.1999.05.001

Theory and nonlinearity of thermoacoustics Ⅱ. Nonlinear sound wavs in a thermoacostic tube

More Information
  • PACS: 
  • Received Date: March 29, 1999
  • Available Online: August 01, 2022
  • Nonlinear sound wave propagation is solved rigorously for progressive and standing waves and applied to composite tubes including thermoacoustic stacks with temperature gradient. The tube is characterized by its cross-sectional area and wave number, the latter is usually complex, representing the phase velocity and dissipation. These are found for tubes of different configurations, including thermoacoustic stacks. On the other hand, the temperature gradient contributes important nonlinearity to the tube, and, as such, is included in the solution of the nonlinear wave equation. It is found that the sound waves propagating in the direction of increasing temperature are amplified and conversely. Composite tubes containing sections of different characters are treated as cascade wave filters to find their performances. A three-section tube is computed, extension can be done with ease. The results provide the basis on which the performance of the whole thermoacoustic system can be predicted
  • Related Articles

    [1]ZHANG Shigong, ZHANG Kesheng, DING Kai, WU Xianmei. High order approximate solution of nonlinear acoustic equation:development and validation[J]. ACTA ACUSTICA, 2021, 46(4): 633-640. DOI: 10.15949/j.cnki.0371-0025.2021.04.015
    [2]DENG Kai, WU Yunfei, LI Hua, FANG Deming, ZHONG Yingjie. Investigation on nonlinear thermoacoustic effects of Rijke tube[J]. ACTA ACUSTICA, 2011, 36(1): 37-42. DOI: 10.15949/j.cnki.0371-0025.2011.01.002
    [3]LU Yigang, FENG Jinyuan, TONG Jie, DONG Yanwu. Study of the nonlinearity acoustic parameter B/A in organic liquids[J]. ACTA ACUSTICA, 2000, 25(2): 126-128. DOI: 10.15949/j.cnki.0371-0025.2000.02.006
    [4]MAA Dah-You. Theory and nonlinearity of thermoacoustics[J]. ACTA ACUSTICA, 1999, 24(4): 337-350. DOI: 10.15949/j.cnki.0371-0025.1999.04.001
    [5]LIU Jiehui, GONG Xiufen, LU Zhiqu. Study of acoustic nonlinearity parameter B/A for magnetic fluids[J]. ACTA ACUSTICA, 1998, 23(2): 107-112. DOI: 10.15949/j.cnki.0371-0025.1998.02.002
    [6]HAN Fei, YUE Guosen, SHA Jiazheng. Nonlinear effect of Rijke thermoacoustic oscillation[J]. ACTA ACUSTICA, 1997, 22(3): 249-254. DOI: 10.15949/j.cnki.0371-0025.1997.03.008
    [7]DENG Mingxi. Research on nonlinearity of Lamb waves (Ⅱ)[J]. ACTA ACUSTICA, 1997, 22(2): 182-187. DOI: 10.15949/j.cnki.0371-0025.1997.02.013
    [8]HAN Fei, SHA Jiazheng. Study on nonlinear increasing procedure of Rijke thermoacoustical instability[J]. ACTA ACUSTICA, 1996, 21(4): 362-367. DOI: 10.15949/j.cnki.0371-0025.1996.04.011
    [9]LU Zhiqu, GONG Xiufen, WANG Yuqin. Study of acoustic nonlinearity parameter B/A for sea water[J]. ACTA ACUSTICA, 1995, 20(6): 432-436. DOI: 10.15949/j.cnki.0371-0025.1995.06.006
    [10]DU Gong-huan, GONG Xiu-fen, ZHU Zhe-min. THE THEORY OF NONLINEAR INTERACTION OF FINITE AMPLITUDE RANDOM SOUND WAVES[J]. ACTA ACUSTICA, 1982, 7(1): 1-7. DOI: 10.15949/j.cnki.0371-0025.1982.01.001

Catalog

    Article Metrics

    Article views (40) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return