EI / SCOPUS / CSCD 收录

中文核心期刊

MU Xiangyu, JIA Lei, ZHANG Shuwu, XU Bo. Tying state-specified rotation using semi-tied covariance transform to model correlations between feature vectors[J]. ACTA ACUSTICA, 2004, 29(2): 171-176. DOI: 10.15949/j.cnki.0371-0025.2004.02.013
Citation: MU Xiangyu, JIA Lei, ZHANG Shuwu, XU Bo. Tying state-specified rotation using semi-tied covariance transform to model correlations between feature vectors[J]. ACTA ACUSTICA, 2004, 29(2): 171-176. DOI: 10.15949/j.cnki.0371-0025.2004.02.013

Tying state-specified rotation using semi-tied covariance transform to model correlations between feature vectors

More Information
  • PACS: 
    • 43.30  (水声学)
    • 43.60  (声学信号处理)
  • Received Date: October 13, 2002
  • Revised Date: May 15, 2003
  • Available Online: August 01, 2022
  • An acoustic modeling method called the tying State-Specified Rotation is proposed. The method incorporates the merits of State-specified Rotation (SSR) and Semi-Tied Covariance Transform (STC), and overcomes computation and memory problems which are incurred because each state has one full feature-space transform matrix. Based on more precision initial model of SSR, STC is used for tying the feature-space transform matrices among different states. The technique solved the problem that the parameters are overload after SSR, and decreased the number of transform matrices without reducing recognition accuracy. Experimental results on a large vocabulary continues speech recognition task of mandarin show that in comparison to the traditional diagonal modeling technique, the proposed method can get nearly 18.8% word error rate reduction without incurring much computation load during decoding.
  • Related Articles

    [1]YIN Hao, SHEN Yong, LIU Ziyun, XUE Zheng. The influence of angle states of rotated diffuser and corner measuring position on the measurement of sound absorption in reverberation room[J]. ACTA ACUSTICA, 2016, 41(5): 694-703. DOI: 10.15949/j.cnki.0371-0025.2016.05.019
    [2]YIN Hui, XIE Xiang, KUANG Jingming. Acoustic features based on auditory model and adaptive fractional Fourier transform for speech recognition[J]. ACTA ACUSTICA, 2012, 37(1): 97-103. DOI: 10.15949/j.cnki.0371-0025.2012.01.011
    [3]ZHANG Qingqing, PAN Jielin, YAN Yonghong. Tonal articulatory feature-based acoustic modeling for Chinese Putonghua speech recognition[J]. ACTA ACUSTICA, 2010, 35(2): 254-260. DOI: 10.15949/j.cnki.0371-0025.2010.02.026
    [4]WANG De-jun, LI Feng-hua. A robust separating and tracking method on two wideband sources by subspace rotation with one vector hydrophone[J]. ACTA ACUSTICA, 2007, 32(5): 404-410. DOI: 10.15949/j.cnki.0371-0025.2007.05.011
    [5]XU Xianghua, ZHU Jie, GUO Qiang. A fuzzy-clustering analysis based on phonetic tied-mixture HMM[J]. ACTA ACUSTICA, 2005, 30(5): 457-461. DOI: 10.15949/j.cnki.0371-0025.2005.05.012
    [6]SUN Guiqing, YANG Desen, SHI Shengguo. Spatial correlation coefficients of acoustic pressure and particle velocity based on vector hydrophone[J]. ACTA ACUSTICA, 2003, 28(6): 509-513. DOI: 10.15949/j.cnki.0371-0025.2003.06.005
    [7]XING Hongyan, LIU Zhaoquan, WAN Mingxi. The generalized correlation algorithm for estimation of time delay based on Wavelet Transform[J]. ACTA ACUSTICA, 2002, 27(1): 88-93. DOI: 10.15949/j.cnki.0371-0025.2002.01.017
    [8]HAN Jiang, YIN Baolin. A model for speech recognition based on joint modeling of frame-based and segmental features[J]. ACTA ACUSTICA, 2000, 25(2): 182-190. DOI: 10.15949/j.cnki.0371-0025.2000.02.016
    [9]WU Zhenyang, WANG Weibin. A spatial hearing model based on spatial feature extraction and artificial neural network[J]. ACTA ACUSTICA, 1999, 24(6): 645-652. DOI: 10.15949/j.cnki.0371-0025.1999.06.011
    [10]ZHANG Xinhua, WANG Jicheng, LIN Liangji. Feature extraction of ship radited noises based on wavelet transform[J]. ACTA ACUSTICA, 1997, 22(2): 139-144. DOI: 10.15949/j.cnki.0371-0025.1997.02.007

Catalog

    Article Metrics

    Article views (48) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return