Processing math: 100%

EI / SCOPUS / CSCD 收录

中文核心期刊

ZHANG Kai, LAN Yu, LI Qi. Research on 1-3 piezocomposite broad-band underwater transducers[J]. ACTA ACUSTICA, 2011, 36(6): 631-637. DOI: 10.15949/j.cnki.0371-0025.2011.06.005
Citation: ZHANG Kai, LAN Yu, LI Qi. Research on 1-3 piezocomposite broad-band underwater transducers[J]. ACTA ACUSTICA, 2011, 36(6): 631-637. DOI: 10.15949/j.cnki.0371-0025.2011.06.005

Research on 1-3 piezocomposite broad-band underwater transducers

More Information
  • PACS: 
    • 43.38  (Transduction, acoustical devices for the generation and reproduction of sound)
  • Received Date: April 11, 2010
  • Revised Date: September 02, 2010
  • Available Online: July 05, 2022
  • There are many advantages of 1-3 piezocomposite transducers, such as lighter weight, lower specific acoustic impedance. The matching layer is commonly used to expand the bandwidth of composite transducers. A 1-3 piezocomposite transducer is studied with thickness-mode oscillations model, lateral-mode model and finite element method. The finite element modal of transducer is set up with ANSYS software and the structure of the transducer is optimized. A fi- nal 1-3 piezocomposite transducer is designed, which used the thickness mode and the first lateral-mode. The bandwidth of the transducer is 190 ~ 390 kHz, in which the ripple of the transmitting voltage response does not exceed ±2 dB. There are several conclusions from the research: The bandwidth of 1-3 piezocomposite transducers can be expanded by the thickness mode and the first lateral-mode, and it gives a method to achieve the broad-band projecting performance of high-frequency transducer.
  • Related Articles

    [1]LIU Zhiying, YAN Shouguo, LIN Xinbo, HUANG Juan, ZHANG Bixing. The acoustic field characteristics of 1-3 piezocomposite two-dimensional cylindrical concave line-focusing transducer[J]. ACTA ACUSTICA, 2022, 47(4): 503-510. DOI: 10.15949/j.cnki.0371-0025.2022.04.012
    [2]WANG Hongwei, HUI Hui, RONG Tian. A high sensitive piezoelectric planar underwater acoustic transducer[J]. ACTA ACUSTICA, 2022, 47(3): 364-371. DOI: 10.15949/j.cnki.0371-0025.2022.03.008
    [3]WANG Hongwei, WANG Likun. High frequency wide band underwater acoustic transducer for ring shaped composite material[J]. ACTA ACUSTICA, 2017, 42(1): 53-59. DOI: 10.15949/j.cnki.0371-0025.2017.01.007
    [4]LI Li, WANG Likun, QIN Lei, WAN Yuanyuan, DU Hongliang, SUN Baisheng. Study on resonance performance of modified 1-3 piezo-compsites[J]. ACTA ACUSTICA, 2007, 32(6): 534-541. DOI: 10.15949/j.cnki.0371-0025.2007.06.008
    [5]ZHANG Kai, ZHOU Tieying, WANG Huan, YUAN Shiming, GUO Zhao, JIANG Kaili, BAI Guizhen. Study on piezoelectric cylinder micro ultrasonic motor with 1 mm diameter[J]. ACTA ACUSTICA, 2004, 29(3): 258-261. DOI: 10.15949/j.cnki.0371-0025.2004.03.012
    [6]FAN Yangyu, TAO Baoqi, XIONG Ke, SHANG Jiuhao, SUN Jincai, LI Yaan. Feature extraction of ship-radiated noise by 112 spectrum[J]. ACTA ACUSTICA, 2002, 27(1): 71-76. DOI: 10.15949/j.cnki.0371-0025.2002.01.014
    [7]CAO Cheng-wei. THE STUDY OF THE MULTI-LAYER FINITE CYLINDRICAL UNDERWATER TRANSDUCER[J]. ACTA ACUSTICA, 1988, 13(6): 424-431. DOI: 10.15949/j.cnki.0371-0025.1988.06.004
    [8]QIAN Zu-wen. TRANSIENT PARAMETRIC ARRAYS (1) OIF-AXIS RADIATION IN THE SELF-DEMODULATION OF PULSES[J]. ACTA ACUSTICA, 1988, 13(2): 119-123. DOI: 10.15949/j.cnki.0371-0025.1988.02.006
    [9]JIN Shu-wu. THE DEVELOPMENT OF SGJ-1 MODEL ULTRASONIC POWER METER WITH TETHERED FLOAT[J]. ACTA ACUSTICA, 1988, 13(1): 67-71. DOI: 10.15949/j.cnki.0371-0025.1988.01.010
    [10]WANG Ring-jin, HOU Zhong-hua, WANG Jiu-kui, CHANG Xue-zhen, HAO Long-shen, LI Xiu-yun. BROAD-BAND ABSORBERS FOR UNDERWATER SOUND[J]. ACTA ACUSTICA, 1979, 4(3): 169-175. DOI: 10.15949/j.cnki.0371-0025.1979.03.002

Catalog

    Article Metrics

    Article views (129) PDF downloads (32) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return