EI / SCOPUS / CSCD 收录

中文核心期刊

HE Xiping, Avraham Benatar. Determination of complex modulus of viscoelastic bars using forced longitudinal vibration of slender rods[J]. ACTA ACUSTICA, 2012, 37(2): 193-197. DOI: 10.15949/j.cnki.0371-0025.2012.02.013
Citation: HE Xiping, Avraham Benatar. Determination of complex modulus of viscoelastic bars using forced longitudinal vibration of slender rods[J]. ACTA ACUSTICA, 2012, 37(2): 193-197. DOI: 10.15949/j.cnki.0371-0025.2012.02.013

Determination of complex modulus of viscoelastic bars using forced longitudinal vibration of slender rods

More Information
  • PACS: 
  • Received Date: April 24, 2011
  • Revised Date: August 28, 2011
  • Available Online: June 22, 2022
  • A new method to identify complex modulus of viscoelastic polymers using forced longitudinal vibration of slender rods is proposed in this work. This new method differs from the beam one. Experimental tests were carried out at room temperature with different lengths in 108 mm, 100 mm, 90 ram, 83.5 mm, 80 ram, 74.5 ram, 70 mm for the polycarbonate bars, and the curves of ratios A2/A1 between two ends of a viscoelastic bar versus frequencies are obtained, furthermore, the corresponding 3 dB bandwidth and the storage and loss modulus are calculated. Sufficient number of obtained complex modulus at different frequency allows us to calculate the other ones using the least square method. If the step of the tested frequency is 5 Hz, the maximum error of results can be less than 6%. By comparison with the measurement methods which the previous literature mentioned, this new method simplifies the calculation, and the physical meaning appears apparently and clearly.
  • Related Articles

    [1]LIU Bin, GANG Tie, WAN Chuhao, LUO Zhiwei, LUAN Yilin. Interaction of fatigue crack with vibration and ultrasound in metallic rod and its use for quantitative characterization[J]. ACTA ACUSTICA, 2016, 41(4): 507-514. DOI: 10.15949/j.cnki.0371-0025.2016.04.008
    [2]SUN Hongxiang, XU Baiqiang, ZHANG Shuyi. Study on depth detection of surface notches using time-of-flight method with surface acoustic waves in viscoelastic media[J]. ACTA ACUSTICA, 2011, 36(2): 139-144. DOI: 10.15949/j.cnki.0371-0025.2011.02.015
    [3]ZHANG Zhiliang. Forced vibration of loudspeaker conical shells in the whole loudspeaker frequency range[J]. ACTA ACUSTICA, 2010, 35(6): 678-687. DOI: 10.15949/j.cnki.0371-0025.2010.06.014
    [4]BAI Guofeng, YIN Yao, ZHOU Chengguang, LIU Bilong, LIU Ke. An investigation on the optimization of complex elastic modulus for viscoelastic absorption materials[J]. ACTA ACUSTICA, 2010, 35(2): 107-112. DOI: 10.15949/j.cnki.0371-0025.2010.02.007
    [5]ZHOU Guangping. Analysis of longitudinal-flexural and torsional-flexural complex-mode vibrations of ultrasonic vibration systems[J]. ACTA ACUSTICA, 2001, 26(5): 435-439. DOI: 10.15949/j.cnki.0371-0025.2001.05.010
    [6]HUANG Mingjun, ZHOU Tieying, WU Qinghua. The influence on friction force by ultrasonic vibration[J]. ACTA ACUSTICA, 2000, 25(2): 115-119. DOI: 10.15949/j.cnki.0371-0025.2000.02.004
    [7]WANG Yinguan, SHAO Lianghua. Ultrasonic testing research of amonia bulk modulus[J]. ACTA ACUSTICA, 1996, 21(S1): 625-631. DOI: 10.15949/j.cnki.0371-0025.1996.S1.030
    [8]MU Ting-rong. FORCED VIBRATION OF THE TWO-LAYER PIEZOCERAMIC AND METAL COMPOSITE THIN CIRCULAR PLATE WITH DIFFERENT DIAMETER FOR EACH LAYER[J]. ACTA ACUSTICA, 1984, 9(5): 298-310. DOI: 10.15949/j.cnki.0371-0025.1984.05.004
    [9]MU TING-RONG. FORCED VIBRATIONS OF METAL-PIEZOCERAMIC THIN COMPOSITE CIRCULAR PLATE EXCITED WITH HOMOGENEOUS PRESSURE[J]. ACTA ACUSTICA, 1983, 8(6): 364-373. DOI: 10.15949/j.cnki.0371-0025.1983.06.006
    [10]MU TING-RONG. FORCED VIBRATIONS OF METAL-PIEZOCERAMIC THIN COMPOSITE CIRCULAR PLATE EXCITED WITH VOLTAGE[J]. ACTA ACUSTICA, 1983, 8(5): 300-310. DOI: 10.15949/j.cnki.0371-0025.1983.05.006

Catalog

    Article Metrics

    Article views (29) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return