EI / SCOPUS / CSCD 收录

中文核心期刊

YANG Hai, ZHANG Xiang, LIANG Chunyan, SUO Hongbin, YAN Yonghong. Robust speaker verification using sparse representation on joint factor analysis[J]. ACTA ACUSTICA, 2012, 37(5): 548-552. DOI: 10.15949/j.cnki.0371-0025.2012.05.011
Citation: YANG Hai, ZHANG Xiang, LIANG Chunyan, SUO Hongbin, YAN Yonghong. Robust speaker verification using sparse representation on joint factor analysis[J]. ACTA ACUSTICA, 2012, 37(5): 548-552. DOI: 10.15949/j.cnki.0371-0025.2012.05.011

Robust speaker verification using sparse representation on joint factor analysis

More Information
  • PACS: 
  • Received Date: August 01, 2011
  • Revised Date: December 22, 2011
  • Available Online: June 22, 2022
  • This paper introduced sparse representation on joint factor analysis to solve the channel mismatch problem and to improve system performance. This algorithm uses joint factor analysis to generate the speaker factors space and construct the over-complete dictionary to calculate speaker score by solving the optimization problem. The minimum detection cost function (minDCF) of the system with sparse representation on joint factor analysis gave good performance on NIST speaker recognition evaluation (SRE) 2008 telephone to telephone test corpus. Because the sparse representation algorithm and the support vector machine classification algorithm also have a good complementary, the fusion of JFA-SR and JFA-SVM can achieve 4.91% reduction in minDCF. The results of the experiments show that speaker verification using sparse representation on joint factor analysis is feasible and has a great future.
  • Related Articles

    [1]ZHANG Wen, ZHANG Jun, WANG Lu, ZHAO Jing, BAO Ming, XU Yaohua. Sparse orthogonal joint constrained multichannel non-negative matrix factorization algorithm for acoustic signal separation[J]. ACTA ACUSTICA, 2023, 48(1): 249-263. DOI: 10.15949/j.cnki.0371-0025.2023.01.025
    [2]WANG Jiawei, XU Feng, YANG Juan. Application of joint sparse representation in underwater target classification[J]. ACTA ACUSTICA, 2022, 47(4): 471-480. DOI: 10.15949/j.cnki.0371-0025.2022.04.004
    [3]FENG Yong, XIONG Qingyu, SHI Weiren, CAO Junhua. Deep nonlinear metric learning for speaker verification[J]. ACTA ACUSTICA, 2018, 43(1): 112-120. DOI: 10.15949/j.cnki.0371-0025.2018.01.013
    [4]WU Di, TAO Zhi, ZHANG Xiaojun, ZHOU Yan, PAN Xinyu, XIAO Zhongzhe, ZHAO Heming. Perception auditory scene analysis for speaker recognition[J]. ACTA ACUSTICA, 2016, 41(2): 260-272. DOI: 10.15949/j.cnki.0371-0025.2016.02.015
    [5]BO Liankun, XIONG Jinyu, LUO Laiyuan. Wideband super-resolution bearing estimation method utilizing sparse representation solver after focusing transformation[J]. ACTA ACUSTICA, 2015, 40(6): 772-778. DOI: 10.15949/j.cnki.0371-0025.2015.06.002
    [6]LIANG Chunyan, YANG Lin, ZHOU Ruohua, YAN Yonghong. Modeling prosodic features with probabilistic linear discriminant analysis for speaker verification[J]. ACTA ACUSTICA, 2015, 40(1): 28-33. DOI: 10.15949/j.cnki.0371-0025.2015.01.004
    [7]ZHANG Wenlin, QU Dan, LI Bicheng. Speaker adaptation using matching pursuit[J]. ACTA ACUSTICA, 2014, 39(4): 523-530. DOI: 10.15949/j.cnki.0371-0025.2014.04.017
    [8]GONG Chenghui, ZHAO Heming, TAO Zhi, ZHANG Qingfang. Speaker factor analysis of whispered speech from global spectral features[J]. ACTA ACUSTICA, 2014, 39(2): 281-288. DOI: 10.15949/j.cnki.0371-0025.2014.02.016
    [9]JIANG Tao, HAN Ji-qing, ZHENG Tie-ran. Gaussian mixture model compensation method using shift factor for speaker recognition[J]. ACTA ACUSTICA, 2011, 36(6): 658-664. DOI: 10.15949/j.cnki.0371-0025.2011.06.009
    [10]CHEN Cunbao, ZHAO Li, ZOU Cairong. Speaker verification using speaker model synthesis and feature mapping based on maximum-likelihood linear regression[J]. ACTA ACUSTICA, 2011, 36(1): 81-87. DOI: 10.15949/j.cnki.0371-0025.2011.01.010

Catalog

    Article Metrics

    Article views (34) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return