EI / SCOPUS / CSCD 收录

中文核心期刊

ZHONG Weifeng, FANG Xiang, FAN Cunhang, WEN Zhengqi, TAO Jianhua. Fusion of deep shallow features and models for speaker recognition[J]. ACTA ACUSTICA, 2018, 43(2): 263-272. DOI: 10.15949/j.cnki.0371-0025.2018.02.016
Citation: ZHONG Weifeng, FANG Xiang, FAN Cunhang, WEN Zhengqi, TAO Jianhua. Fusion of deep shallow features and models for speaker recognition[J]. ACTA ACUSTICA, 2018, 43(2): 263-272. DOI: 10.15949/j.cnki.0371-0025.2018.02.016

Fusion of deep shallow features and models for speaker recognition

More Information
  • PACS: 
  • Received Date: January 09, 2017
  • Revised Date: April 16, 2017
  • Available Online: June 27, 2022
  • We propose a features fusion and a models fusion approach for speaker recognition to further improve the performance of speaker recognition. The proposed method of deep and shallow features fusion describes the speaker information more comprehensively because of the complementarity between different level features; the other method fusions the I-Vector extracted from different speaker recognition systems and can combine the advantages of different speaker recognition system. The experimental results show that, the relative improvements from the proposed framework compared to a state-of-the-art system are of 54.8% and 69.5% relative at the equal error rate when evaluated on the CASIA North and South dialect corpus. Proved that the proposed method is effective.
  • Related Articles

    [1]YU Xueyang, CHI Cheng, LI Shuqiu, LI Derui. Underwater acoustic target recognition using line enhancement and deep neural network[J]. ACTA ACUSTICA, 2024, 49(4): 656-663. DOI: 10.12395/0371-0025.2024021
    [2]YANG Yi, HU Qi, ZHANG Pengyuan. Light-weight speech separation based on dual-path attention and recurrent neural network[J]. ACTA ACUSTICA, 2023, 48(5): 1060-1069. DOI: 10.12395/0371-0025.2022044
    [3]BO Haojun, ZHANG Tianqi, LIU Jianxing, YE Shaopeng. Speech enhancement combining accurate ratio masking and deep neural network[J]. ACTA ACUSTICA, 2022, 47(3): 394-404. DOI: 10.15949/j.cnki.0371-0025.2022.03.009
    [4]LI Yue, MA Xiaochuan, LIU Yu, WANG Lei, LI Xuan, WEI Runyu. Tracking model of maneuvering target based on recurrent neural network in non-equal sound speed channel[J]. ACTA ACUSTICA, 2021, 46(6): 1013-1027. DOI: 10.15949/j.cnki.0371-0025.2021.06.021
    [5]ZHANG Xiaoyan, ZHANG Tianqi, GE Wanying, BAI Yangliu. Monaural speech enhancement combining deep neural network and convex optimation[J]. ACTA ACUSTICA, 2021, 46(3): 471-480. DOI: 10.15949/j.cnki.0371-0025.2021.03.019
    [6]ZHANG Tianqi, XIONG Mei, ZHANG Ting, YANG Qiang. A separation method of singing and accompaniment combining discriminative training deep neural network[J]. ACTA ACUSTICA, 2019, 44(3): 393-400. DOI: 10.15949/j.cnki.0371-0025.2019.03.015
    [7]LI Xu, WANG Ziteng, WANG Xiaofei, FU Qiang, YAN Yonghong. Single-channel speech enhancement based on gender-related deep neural networks and non-negative matrix factorization models[J]. ACTA ACUSTICA, 2019, 44(2): 221-230. DOI: 10.15949/j.cnki.0371-0025.2019.02.009
    [8]SHI Chenglong, SHI Fangfang, ZHANG Bixing. Analysis on defect classification by deep neural networks and wavelet packet transform[J]. ACTA ACUSTICA, 2016, 41(4): 499-506. DOI: 10.15949/j.cnki.0371-0025.2016.04.007
    [9]GU Xiaojiang, ZHAO Heming, LÜ Gang. An application in whispered speaker identification using feature and model hybrid compensation method[J]. ACTA ACUSTICA, 2012, 37(2): 198-203. DOI: 10.15949/j.cnki.0371-0025.2012.02.008
    [10]WU Zhenyang, WANG Weibin. A spatial hearing model based on spatial feature extraction and artificial neural network[J]. ACTA ACUSTICA, 1999, 24(6): 645-652. DOI: 10.15949/j.cnki.0371-0025.1999.06.011
  • Cited by

    Periodical cited type(13)

    1. 章子旭,简志华. 采用双重交换表示分离的任意说话人语音转换. 电子学报. 2024(06): 2141-2150 .
    2. 潘齐炜,程吉祥,田甜,吴丹,曾蕊. 基于特征融合与注意力机制的鸟类声纹识别方法. 声学技术. 2024(05): 686-695 .
    3. 刘臣,倪仁倢,周立欣,侯昌佑. 多声学特征融合的语音自动剪辑深度学习模型. 小型微型计算机系统. 2023(08): 1713-1719 .
    4. 盛永健,黄子龙,刘晨,曹毅,张洪. 基于改进卷积神经网络的燃气调压器故障识别研究. 现代制造工程. 2021(04): 132-138 .
    5. 张兴明,杨凯. 深度学习说话人识别中语音特征参数提取研究. 现代计算机. 2021(08): 3-7+13 .
    6. 罗春梅,张风雷. 基于均值特征和改进深度神经网络的说话人识别算法. 声学技术. 2021(04): 503-507 .
    7. 罗春梅. 基于改进MFCC与RCNN的说话人识别算法. 数学的实践与认识. 2021(17): 102-110 .
    8. 柴庆凤,史霖炎,梅珊,熊海涛,贺惠新. 基于人工特征和机器特征融合的科技文献知识元抽取. 数据分析与知识发现. 2021(08): 132-143 .
    9. 赵宏,岳鲁鹏,常兆斌,王伟杰. 基于多特征I-Vector的说话人识别算法. 兰州理工大学学报. 2021(05): 93-98 .
    10. 陈志高,赵庆卫,王丽,王文超. 融合分布对齐和对抗学习的无监督跨域声纹识别. 声学学报. 2021(05): 767-774 . 本站查看
    11. 曾春艳,马超峰,王志锋,朱栋梁,赵楠,王娟,刘聪. 深度学习框架下说话人识别研究综述. 计算机工程与应用. 2020(07): 8-16 .
    12. 郭斐,靳伍银,王猛. 基于改进的Faster R-CNN算法的机械零件图像识别. 机械设计. 2019(09): 113-116 .
    13. 曹毅,黄子龙,张威,刘晨,李巍. N-DenseNet的城市声音事件分类模型. 西安电子科技大学学报. 2019(06): 9-16+94 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (134) PDF downloads (27) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return