EI / SCOPUS / CSCD 收录

中文核心期刊

XU Chuanxiu, YANG Shie, PO Shengchun, ZHANG Haigang, TANG Jun, LIU Jiaqi. A three-dimensional parabolic equation using non-uniform depth and horizontal grids in ocean acoustics[J]. ACTA ACUSTICA, 2018, 43(4): 453-462. DOI: 10.15949/j.cnki.0371-0025.2018.04.005
Citation: XU Chuanxiu, YANG Shie, PO Shengchun, ZHANG Haigang, TANG Jun, LIU Jiaqi. A three-dimensional parabolic equation using non-uniform depth and horizontal grids in ocean acoustics[J]. ACTA ACUSTICA, 2018, 43(4): 453-462. DOI: 10.15949/j.cnki.0371-0025.2018.04.005

A three-dimensional parabolic equation using non-uniform depth and horizontal grids in ocean acoustics

More Information
  • PACS: 
  • Received Date: January 08, 2018
  • Revised Date: March 27, 2018
  • Available Online: June 27, 2022
  • Three-dimensional parabolic equation models can be used to analyze three-dimensional (3-D) sound propagation effects in ocean acoustics. However, long calculation time and large computer memory must be consumed when the models are used to analyze 3-D sound propagation problems, which makes it very difficult to calculate long-range sound fields accurately. Therefore, a non-uniform depth and horizontal grid scheme is applied to a 3-D parabolic equation model in Cartesian coordinates. Some numerical examples show that the improved parabolic equation model can calculate long-range sound propagation problems at higher rate of speed and accuracy. To consider 3-D sound propagation problems where the environmental parameters are rauge-independent in short range but range-dependent in long range, the the computer code Kraken is used to build the starting sound field and is adopted to calculate the 3-D sound field recursively. A long-range wedge-shaped waveguide problem is considered in the rebuilt model to show an energy enhancement phenomenon.
  • Related Articles

    [1]LIU Jingben, YAN Chao, GUO Lianghao, DONG Ge, DUAN Zhengchen. Fast calculation method of adaptive beamforming for curved-surface array[J]. ACTA ACUSTICA, 2021, 46(6): 847-862. DOI: 10.15949/j.cnki.0371-0025.2021.06.007
    [2]HUANG He, ZOU Mingsong, JIANG Lingwen. Computing method of sound radiation of target in ocean acoustic environment[J]. ACTA ACUSTICA, 2019, 44(6): 1027-1035. DOI: 10.15949/j.cnki.0371-0025.2019.06.008
    [3]YU Peixun, PAN Kai, BAI Junqiang, HAN Xiao. Computational aero-acoustics prediction method based on fast random particle mesh[J]. ACTA ACUSTICA, 2018, 43(5): 817-828. DOI: 10.15949/j.cnki.0371-0025.2018.05.012
    [4]DONG Ming, MA Hongwei, CHEN Yuan, YANG Ping, ZHANG Guangming. A high-speed method for computing the exact solution of spatial impulse response[J]. ACTA ACUSTICA, 2015, 40(6): 850-854. DOI: 10.15949/j.cnki.0371-0025.2015.06.011
    [5]ZHANG Yongbin, BI Chuanxing, ZHANG Xiaozheng. The method for improving the reconstruction accuracy and computational speed of the statistically optimized nearfield acoustic holography[J]. ACTA ACUSTICA, 2014, 39(2): 191-198. DOI: 10.15949/j.cnki.0371-0025.2014.02.020
    [6]SHEN Su, LIU Bilong, LI Xiaodong, TIAN Jing. An analysis of a fast calculation method of modal radiation reactance of a simply-supported rectangular panel[J]. ACTA ACUSTICA, 2010, 35(2): 126-133. DOI: 10.15949/j.cnki.0371-0025.2010.02.003
    [7]FAN Li, WANG Benren, JIN Tao, ZHANG Shuyi. Study on computing of resonance frequency of resonance pipes[J]. ACTA ACUSTICA, 2005, 30(5): 409-414. DOI: 10.15949/j.cnki.0371-0025.2005.05.004
    [8]DAI Genhua, LI Peizi, BIAN Xiaodong, ZHU Zhichi. Computation of sound field in a reverberation room with simple harmonic wave method and the theoretical error of sound intensity measurement[J]. ACTA ACUSTICA, 1998, 23(1): 9-18. DOI: 10.15949/j.cnki.0371-0025.1998.01.002
    [9]ZHANG Yue, ZHANG Shuying. A study of computations for acoustic velocities of arbitrarily dipping layers[J]. ACTA ACUSTICA, 1991, 16(3): 182-186. DOI: 10.15949/j.cnki.0371-0025.1991.03.004
    [10]ZHANG Yue, ZHU Zhichi. A numerical method for computing sound propagation with shock waves in ducts with transonic flow[J]. ACTA ACUSTICA, 1991, 16(1): 52-66. DOI: 10.15949/j.cnki.0371-0025.1991.01.009
  • Cited by

    Periodical cited type(1)

    1. 习强,傅卓佳. 基于浅海环境潜器振动的水下声辐射计算模型研究进展. 科学通报. 2022(27): 3269-3281 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (154) PDF downloads (34) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return