EI / SCOPUS / CSCD 收录

中文核心期刊

SHI Guixin, YAN Shefeng, HAO Chengpeng, HOU Chaohuan, LIU Yu. Target tracking algorithm for underwater ranges-only long baseline system with incomplete measurements[J]. ACTA ACUSTICA, 2019, 44(4): 480-490. DOI: 10.15949/j.cnki.0371-0025.2019.04.009
Citation: SHI Guixin, YAN Shefeng, HAO Chengpeng, HOU Chaohuan, LIU Yu. Target tracking algorithm for underwater ranges-only long baseline system with incomplete measurements[J]. ACTA ACUSTICA, 2019, 44(4): 480-490. DOI: 10.15949/j.cnki.0371-0025.2019.04.009

Target tracking algorithm for underwater ranges-only long baseline system with incomplete measurements

More Information
  • PACS: 
  • Received Date: October 28, 2018
  • Revised Date: April 17, 2019
  • Available Online: June 27, 2022
  • A Least Squares-Cubature Kalman Filter(LS-CKF) algorithm is proposed,aiming at increasing the tracking accuracy of underwater maneuvering target with incomplete measurements of the long baseline system.Firstly,a practical two-dimensional mathematical model of underwater target tracking with incomplete measurements is established.Secondly,a two-layer CKF is introduced where the expression of the cubature point under the latest measurement constraint is derived via least square estimation in the first layer to improve the accuracy of the measurement updating process.Finally,considering the underwater tracking system is power-limited,a simplified form of the new algorithm with ranges-only measurements is derived.The accuracy of the proposed algorithm is improved because the latest measurement is effectively integrated into each cubature point with the Least-Squares method,which allows the cubature points to move from the a prior area to the high likelihood region.The results of the simulation and the lake trial both show that the new algorithm significantly improves the tracking accuracy on condition that severe incomplete measurements and large initial error.Compared with the standard CKF algorithm,the convergence speed of LS-CKF is double while the tracking error is reduced by more than 10%.
  • Related Articles

    [1]SUN Dajun, XU Jian, ZHENG Cuie, ZHANG Jucheng. A high-precision long-baseline three-dimensional velocity measurement method for underwater volume targets[J]. ACTA ACUSTICA, 2025, 50(4): 984-992. DOI: 10.12395/0371-0025.2023150
    [2]WANG Yan, LI Dongyu, HAO Yu, LI Xiang, LI Na, LIANG Guolong. Element selection method based on horizontal dilution of precision for long baseline underwater acoustic localization[J]. ACTA ACUSTICA, 2025, 50(4): 973-983. DOI: 10.12395/0371-0025.2023265
    [3]HAN Yunfeng, ZHENG Cuie, SUN Dajun. An optimized estimation method in long baseline acoustic positioning systems[J]. ACTA ACUSTICA, 2017, 42(1): 14-20. DOI: 10.15949/j.cnki.0371-0025.2017.01.002
    [4]HAN Yunfeng, ZHENG Cuie, SUN Dajun. A high precision calibration method for long baseline acoustic positioning systems[J]. ACTA ACUSTICA, 2016, 41(4): 456-464. DOI: 10.15949/j.cnki.0371-0025.2016.04.002
    [5]LI Zhuang, QIAO Gang, HE Chao, ZHAO Haiyang. The research of short baseline positioning integration of time-reversal mirror[J]. ACTA ACUSTICA, 2013, 38(3): 287-293. DOI: 10.15949/j.cnki.0371-0025.2013.03.006
    [6]FENG Jinxing, DING Shiqi, HUI Junying. A solution of locating a moving object using long-base line acoustic system[J]. ACTA ACUSTICA, 1996, 21(5): 832-837. DOI: 10.15949/j.cnki.0371-0025.1996.05.009
    [7]CAI Ping, LIANG Guolong, HUI Junying. Influence of boundaries on ultrashort——base line underwater acoustic tracking system[J]. ACTA ACUSTICA, 1993, 18(6): 420-429. DOI: 10.15949/j.cnki.0371-0025.1993.06.004
    [8]LI Yingchun, WU Deming. Correction of located points in a hyperbolical locating system with a small plane array[J]. ACTA ACUSTICA, 1992, 17(5): 340-344. DOI: 10.15949/j.cnki.0371-0025.1992.05.004
    [9]LIU Guozhi. Hardware pre-processing for data of SBL underwater prositioning system[J]. ACTA ACUSTICA, 1990, 15(4): 246-250. DOI: 10.15949/j.cnki.0371-0025.1990.04.002
    [10]SUN Hong-sheng. DESIGN PRINCIPLE OF THE SPEECH BROADCASTING SYSTEM FOR A LONG RANGE[J]. ACTA ACUSTICA, 1984, 9(3): 180-188. DOI: 10.15949/j.cnki.0371-0025.1984.03.007
  • Cited by

    Periodical cited type(7)

    1. 陈雨轩,赵宏宇,张博轩,侯翔昊. 基于自适应波束形成的水下目标高稳健DOA跟踪技术. 无人系统技术. 2024(02): 82-91 .
    2. 吴心童,刘宇,马晓川,马中静. 含未知非高斯噪声的自适应量测转换水下目标跟踪. 声学学报. 2024(04): 671-682 . 本站查看
    3. 张博轩,杨益新,侯翔昊. 量测噪声不确定情况下的水下多目标稳健方位跟踪. 声学学报. 2023(04): 605-617 . 本站查看
    4. 木尼拉·塔里甫,安尼瓦尔·加马力,亚森·艾则孜. 基于结构信息建模和判别稀疏的红外小目标跟踪方法. 光学技术. 2021(05): 622-631 .
    5. 李悦,马晓川,刘宇,王磊,李璇,魏润宇. 非等声速信道下的循环神经网络机动目标跟踪模型. 声学学报. 2021(06): 1013-1027 . 本站查看
    6. 侯翔昊,乔钢,周建波,杨益新. 基于矢量对偶四元数的水下机动目标自适应跟踪. 哈尔滨工程大学学报. 2020(10): 1444-1449+1463 .
    7. 田德艳,张小川,邹司宸,马士全,吕勇. L2正则化粒子滤波在水下无人平台纯方位角跟踪的应用. 舰船科学技术. 2020(23): 111-116 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (180) PDF downloads (40) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return