EI / SCOPUS / CSCD 收录

中文核心期刊

ZHU Guangping, GU Xin, HAN Xiao, YIN Jingwei. Theoretical prediction of reverberation intensity for bistatic sonar underneath the ice[J]. ACTA ACUSTICA, 2020, 45(3): 325-333. DOI: 10.15949/j.cnki.0371-0025.2020.03.004
Citation: ZHU Guangping, GU Xin, HAN Xiao, YIN Jingwei. Theoretical prediction of reverberation intensity for bistatic sonar underneath the ice[J]. ACTA ACUSTICA, 2020, 45(3): 325-333. DOI: 10.15949/j.cnki.0371-0025.2020.03.004

Theoretical prediction of reverberation intensity for bistatic sonar underneath the ice

More Information
  • PACS: 
  • Received Date: August 14, 2018
  • Revised Date: March 31, 2019
  • Available Online: June 26, 2022
  • A theoretical prediction formula for the average intensity of reverberation caused by the ice layer is given for the operation of bistatic sonar underneath the ice with small-scale roughness.Firstly,the Arctic ice layer is equivalent to an elastic medium with a rough interface,and the three-dimensional scattering intensity model of the rough ice layer is established based on the fine fitting roughness spectrum.Then a three-dimensional bistatic sonar geometric model is established to determine the effective scattering region.Finally,the calculation formula of the average intensity of the bistatic ice reverberation is given,and in the case of this fitted roughness spectrum,the prediction formula is used to calculate the examples of the effects of sonar configuration parameters,sea ice physical properties and acoustic properties on the reverberation intensity under ice.The numerical simulation results show that the formula can estimate the average reverberation intensity of the bistatic sonar underneath the Arctic ice,and the influences of sea ice physical parameters and sonar configuration parameters on the reverberation intensity are analyzed.The configuration parameters of the sonar mainly affect the effective area of the scattering,and the physical parameters of the sea ice affect the scattering intensity of the ice layer.Moreover,the ice layer sound speed ratio not only affects the reverberation intensity,but also affects the decay speed of the reverberation.
  • Related Articles

    [1]ZHANG Zuoxiang, WU Jinrong, ZHU Jiahui, HOU Qiannan, ZHANG Yangfan. The average intensity of bistatic reverberation from air-gun beneath Arctic ice cover[J]. ACTA ACUSTICA, 2025, 50(3): 600-609. DOI: 10.12395/0371-0025.2024416
    [2]LIANG Guolong, ZHOU Yichen, QIU Longhao. Real-time calibration method of flexible horizontal array for bistatic active detection[J]. ACTA ACUSTICA, 2023, 48(4): 831-842. DOI: 10.15949/j.cnki.0371-0025.2023.04.021
    [3]GU Yiming, GONG Zaixiao, CHEN Yanli, LI Zhenglin. Direct blast cancelling of the frequency modulation signals for bistatic active sonar in shallow water[J]. ACTA ACUSTICA, 2022, 47(2): 187-197. DOI: 10.15949/j.cnki.0371-0025.2022.02.002
    [4]XUE Runze, DUAN Rui, YANG Kunde, MA Yuanliang, GUO Yue. Modeling and analysis of monostatic incoherent boundary reverberation intensity in deep water[J]. ACTA ACUSTICA, 2021, 46(6): 926-938. DOI: 10.15949/j.cnki.0371-0025.2021.06.014
    [5]ZHANG De, LI Baowei, FAN Maojun, LI Chunxia, HE Yonggang. Optimal configuration of bistatic sonar system using Cramer Rao Lower Bound of position estimation[J]. ACTA ACUSTICA, 2021, 46(3): 387-393. DOI: 10.15949/j.cnki.0371-0025.2021.03.007
    [6]GU Yiming, LI Zhenglin, GONG Zaixiao, YU Yanxin, ZHANG Renhe, LI Fenghua. Experimental verification of bistatic active detection and propagation speed correction in shallow water with negative thermocline[J]. ACTA ACUSTICA, 2019, 44(4): 429-441. DOI: 10.15949/j.cnki.0371-0025.2019.04.004
    [7]GAO Bo, YANG Shi'e, PIAO Shengchun, ZHANG Haigang, MO Yaxiao. Research of surface reverberation using coupled mode theory[J]. ACTA ACUSTICA, 2013, 38(5): 517-522. DOI: 10.15949/j.cnki.0371-0025.2013.05.015
    [8]HUI Juan, HUI Junying, WANG Zijuan. The prediction of bistatic reverberation average strength[J]. ACTA ACUSTICA, 2009, 34(1): 47-53. DOI: 10.15949/j.cnki.0371-0025.2009.01.005
    [9]ZHANG Xiaofeng, ZHAO Junwei, MA Zhongcheng, LI Guijuan, WANG Rongqing. Research on localization algorithm with weighted least squares estimate for bistatic sonar[J]. ACTA ACUSTICA, 2004, 29(3): 283-286. DOI: 10.15949/j.cnki.0371-0025.2004.03.017
    [10]ZHANG Ren-he, JIN Guo-liang. NORMAL-MODE THEORY OF THE AVERAGE REVERBERATION INTENSITY IN SHALLOW-WATER[J]. ACTA ACUSTICA, 1984, 9(1): 12-20. DOI: 10.15949/j.cnki.0371-0025.1984.01.002
  • Cited by

    Periodical cited type(6)

    1. 邹怡飞,李秀坤,于歌. 北极冰层混响多维特性分析及其抑制. 声学学报. 2025(03): 610-621 . 本站查看
    2. 张祚祥,吴金荣,朱嘉慧,侯倩男,张扬帆. 北极冰层覆盖下气枪声源双基地混响平均强度. 声学学报. 2025(03): 600-609 . 本站查看
    3. 吴双林,秦继兴,戚聿波,李整林. 深海声学及水下声源定位研究进展. 声学学报. 2025(03): 551-570 . 本站查看
    4. 黄海宁,殷敬伟,杨燕明,刘崇磊,韩笑,张扬帆,文洪涛,朱广平. 持续变化的北极环境及极地声学研究新进展. 声学学报. 2025(03): 537-550 . 本站查看
    5. 陈晟,文洪涛,周鸿涛,杨燕明,潘煜. 北极冰层反射系数与Lamb波频散的关系. 声学学报. 2024(04): 868-879 . 本站查看
    6. 陈晟,杨燕明,周鸿涛,文洪涛,黄二辉. 北极跨冰层水中声源方位估计实验与分析. 声学学报. 2022(02): 175-186 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (107) PDF downloads (31) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return