EI / SCOPUS / CSCD 收录

中文核心期刊

ZHU Hanhao, XUE Yangyang, CUI Zhiqiang, WANG Qile. Inversion of shallow seabed structure and geoacoustic parameters with ship radiated noise Bayesian method[J]. ACTA ACUSTICA, 2022, 47(6): 765-776. DOI: 10.15949/j.cnki.0371-0025.2022.06.009
Citation: ZHU Hanhao, XUE Yangyang, CUI Zhiqiang, WANG Qile. Inversion of shallow seabed structure and geoacoustic parameters with ship radiated noise Bayesian method[J]. ACTA ACUSTICA, 2022, 47(6): 765-776. DOI: 10.15949/j.cnki.0371-0025.2022.06.009

Inversion of shallow seabed structure and geoacoustic parameters with ship radiated noise Bayesian method

More Information
  • Received Date: May 22, 2021
  • Revised Date: September 08, 2021
  • Available Online: November 04, 2022
  • Aiming at the problem of shallow seabed layered structure and geoacoustic parameter inversion with ship radiated noise as the reference sound source, a shallow multi-layered seabed geoacoustic parameter inversion method based on Bayesian theory is studied. In the inversion, the line spectrum component of the ship radiated noise is the research object, and then the nonlinear Bayesian inversion method is used to invert the parameters of the seabed structure, the wave speed and density in the layer, and the uncertainty of the inversion result is analyed. The Maximum A Posterior (MAP) estimate and the marginal probability distribution of the inversion result are calculated by the Optimization Simulated Annealing (OSA) and Metropolis-Hastings Sample (MHS) method in the prior interval of each parameter, and the best seabed layering is determined according to the Bayesian Information Criterion (BIC). The sea experiments show that the seabed layered structure and geoacoustic parameters are obtained by inversion according to this method, and the error between the calculated sound pressure field and the measured ship radiated noise transmission loss not exceed 10%, and the inversion result can accurately represent the seabed characteristics of the experimental sea area. The uncertainty of the inversion result shows that the uncertainty of the compression wave speed, shear wave speed and density is smaller, and it is more sensitive to changes in the sound pressure field, and the inversion result is more effective and accurate.
  • [1]
    臧涛, 海伟. 浅海海底声学参数反演方法研究. 舰船电子工程, 2015, 35(11):154-156
    [2]
    张学磊, 李整林, 黄晓砥. 一种地声参数的联合反演方法. 声学学报, 2009; 34(1):54-59
    [3]
    Tollefsen D, Dosso S E. Ship source level estimation and uncertainty quantification in shallow water via Bayesian marginalization. J. Acoust. Soc. Am., 2020; 147(4):339-344
    [4]
    Battle D J, Gerstoft P, Kuperman W A et al. Geoacoustic inversion of tow-ship noise via near-field-matched-field processing. IEEE J. Oceanic Eng., 2003, 28(3):454-467
    [5]
    Crocker S E, Nielsen P L et al. Geoacoustic inversion of ship radiated noise in shallow water using data from a single hydrophone. J. Acoust. Soc. Am., 2014, 136(5):362-368
    [6]
    Dahl P H, Dall'Osto D R. Estimation of seabed properties and range from vector acoustic observations of underwater ship noise. J. Acoust. Soc. Am., 2020, 147(4):345-350
    [7]
    Dosso S E, Holland C W. Geoacoustic uncertainties from viscoelastic inversion of seabed reflection data. IEEE J. Oceanic Eng., 2007; 31(3):657-671
    [8]
    Battle D J, Gerstoft P, Hodgkiss W S et al. Bayesian model selection applied to self-noise geoacoustic inversion. J. Acoust. Soc. Am., 2004, 116(4):2043-2056
    [9]
    Gerstoft P. Inversion of seismoacoustic data using genetic algorithms and aposteriori probability distributions. J. Acoust. Soc. Am., 1994, 95(2):770-782
    [10]
    Dosso S E, Dong H, Duffaut K. Model selection for profile structure in Bayesian geoacoustic inversion. J. Acoust. Soc. Am., 2017; 141(5):3470-3470
    [11]
    Dosso S E, Nielsen P L. Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data. J. Acoust. Soc. Am., 2002; 111(1):143-159
    [12]
    薄连坤, 熊瑾煜, 张晓勇, 刘成元. 利用拖船自噪声进行浅海环境参数贝叶斯反演. 声学学报, 2019; 44(6):69-78
    [13]
    任群言, 朴胜春, 马力等. 利用渔船噪声矢量场对地声参数的估计. 哈尔滨工程大学学报, 2018; 39(2):236-240
    [14]
    Xue Y Y, Lei F Q, Zhu H H et al. An inversion method for geoacoustic parameters of multilayer seabed in shallow water. J. Phys. Conf. Ser., 2021; 1739:012019
    [15]
    Zheng G, Zhu H, X, Wang et al. Bayesian inversion for geoacoustic parameters in shallow sea. Sensors, 2020; 20(7):2150
    [16]
    Dosso S E, Dettmer J. Bayesian matched-field geoacoustic inversion. Inverse Problems, 2011; 27(5):055009
    [17]
    李翠琳. 基于非线性贝叶斯理论的多模态界面波频散曲线反演研究. 博士学位论文, 青岛:中国海洋大学, 2011
    [18]
    于盛齐. 基于反向散射强度的海底参数反演方法研究. 博士学位论文, 哈尔滨:哈尔滨工程大学, 2014
    [19]
    Steininger G A, Dosso S E, Dettmer J et al. Bayesian inversion of seabed scattering data (special research award in ocean acoustics). 2011
    [20]
    江鹏飞, 林建恒, 马力, 殷宝友, 蒋国健. 一种海洋环境噪声分步反演地声参数方法. 声学学报, 2016; 41(1):59-66
    [21]
    Dosso S E, Dettmer J, Steininger G et al. Efficient trans-dimensional Bayesian inversion for geoacoustic profile estimation. J. Acoust. Soc. Am., 2014; 136(11):114018
    [22]
    Tollefsen D, Dosso S E. Bayesian geoacoustic inversion of ship noise on a horizontal array. J. Acoust. Soc. Am., 2008; 124(2):788-795
    [23]
    任群言. 利用舰船噪声的海底地声参数反演研究. 博士学位论文, 哈尔滨:哈尔滨工程大学, 2013
    [24]
    祝捍皓. 基于声矢量场阻抗特征的地声参数反演研究. 博士学位论文, 哈尔滨:哈尔滨工程大学, 2014
    [25]
    杨坤德, 马远良. 采用邻域近似算法估计环境参数不确定性. 声学学报, 2008; 33(1) 41-50
  • Related Articles

    [1]PANG Jie, GAO Bo, GAO Dazhi. Quantification method for uncertainty in deep-sea acoustic channels[J]. ACTA ACUSTICA, 2025, 50(3): 778-787. DOI: 10.12395/0371-0025.2024418
    [2]WU Weiwen, REN Qunyan, LU Licheng, GUO Shengming, MA Li. Trans-dimensional Bayesian geoacoustic inversion in shallow water[J]. ACTA ACUSTICA, 2023, 48(3): 496-505. DOI: 10.15949/j.cnki.0371-0025.2023.03.017
    [3]ZHANG Xu, SUN Ao, HAN Xu, XIN Jian. Acoustic localization scheme and accuracy analysis for underwater vertical motion target using multi-stations in the seabed[J]. ACTA ACUSTICA, 2019, 44(2): 155-169. DOI: 10.15949/j.cnki.0371-0025.2019.02.002
    [4]CHEN Bo, ZHAO Mei, HU Zhangqing, Zygmunt Klusek. Analysis on spatial coherence of ambient noise and geoacoustic inversion in shallow water[J]. ACTA ACUSTICA, 2018, 43(3): 298-306. DOI: 10.15949/j.cnki.0371-0025.2018.03.004
    [5]DA Lianglong, CUI Baolong, GUO Wuhong, ZHAO Jianxin. The rapid uncertainty prediction of the ocean-acoustic coupled model[J]. ACTA ACUSTICA, 2017, 42(5): 535-542. DOI: 10.15949/j.cnki.0371-0025.2017.05.003
    [6]LIU Zuojun, YU Dejie, CHEN Ning, XIA Baizhan. Numerical analysis of the 2D acoustic field with epistemic uncertainty[J]. ACTA ACUSTICA, 2016, 41(2): 211-219. DOI: 10.15949/j.cnki.0371-0025.2016.02.009
    [7]DA Lianglong, GUO Wuhong, ZHAO Jianxin, FAN Peiqin. Capture uncertainty of underwater environment by ocean-acoustic coupled model[J]. ACTA ACUSTICA, 2015, 40(3): 477-486. DOI: 10.15949/j.cnki.0371-0025.2015.03.016
    [8]SUN Mei, LI Feng-hua, ZHANG Ren-he. The influence of the uncertainty of water depth on the inversion of bottom sound speed based on normal mode group velocities in Pekeris waveguides[J]. ACTA ACUSTICA, 2011, 36(6): 579-587. DOI: 10.15949/j.cnki.0371-0025.2011.06.014
    [9]YANG Kunde, MA Yuanliang. Estimating parameter uncertainties by a neighbourhood approximation algorithm[J]. ACTA ACUSTICA, 2008, 33(1): 41-50. DOI: 10.15949/j.cnki.0371-0025.2008.01.006
    [10]ZHANG Deming, LI Zhenglin, ZHANG Renhe. Inversion for the bottom geoacoustic parameters based on adaptive time-frequency analysis[J]. ACTA ACUSTICA, 2005, 30(5): 415-419. DOI: 10.15949/j.cnki.0371-0025.2005.05.005

Catalog

    Article Metrics

    Article views (283) PDF downloads (50) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return