EI / SCOPUS / CSCD 收录

中文核心期刊

SONG Bowen, MA Qi, HU Wenxiang, QIAN Menglu. Ultrasonic Scholte wave dispersive properties and parameters characterization of films in water immersion layered thin film-substrate structure[J]. ACTA ACUSTICA, 2023, 48(1): 128-137. DOI: 10.15949/j.cnki.0371-0025.2023.01.019
Citation: SONG Bowen, MA Qi, HU Wenxiang, QIAN Menglu. Ultrasonic Scholte wave dispersive properties and parameters characterization of films in water immersion layered thin film-substrate structure[J]. ACTA ACUSTICA, 2023, 48(1): 128-137. DOI: 10.15949/j.cnki.0371-0025.2023.01.019

Ultrasonic Scholte wave dispersive properties and parameters characterization of films in water immersion layered thin film-substrate structure

More Information
  • Received Date: March 09, 2022
  • Revised Date: April 29, 2022
  • Available Online: January 17, 2023
  • The structure of multilayer films deposited on a substrate is widely used in many fields, such as microelectronic devices, but the ultrasonic measurement of the film material parameters, especially the shear velocity, is a difficult problem. The theoretical analysis for dispersion properties of liquid-solid interface Scholte wave and acoustic pressure response generated by a pulse excitation shows that the Scholte interface wave dispersion is associated significantly with the velocity distribution of multilayer films. The thickness and shear wave velocity of each layer of thin film materials significantly affect the interface wave dispersive characteristics. A multi-parameter inversion method for layered films is proposed based on the dispersive properties of Scholte wave at the interface between liquid and layered film-substrate structure. The proposed method is first processed and verified by theoretical synthetic signals, and further experiment is conducted to excite and acquire liquid-solid interface waves for different types of multilayer film material samples. The inversion results of layered film parameters for experimental signals confirm the feasibility, effectiveness and convenience of this method.
  • [1]
    Kanja J, Mills R, Li X et al. Non-contact measurement of the thickness of a surface film using a superimposed ultrasonic standing wave. Ultrasonics, 2021; 110:106291
    [2]
    Brick D, Hofstetter M, Stritt P et al. Glass transition of nanometric polymer films probed by picosecond ultrasonics. Ultrasonics, 2022; 119:106630
    [3]
    Tanemura S, Miao L, Jin P et al. Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering. Appl. Surf. Sci., 2003; 212:654-660
    [4]
    Appleget C D, Hodge A M. Optical and mechanical characterization of sputtered AlN/Ag multilayer films. Adv. Eng. Mater., 2019; 21(5):1801268
    [5]
    Abdelsalam Ibrahim D G, Khalil S K H, Sherif H H A et al. Multilayer film thickness measurement using ultrafast terahertz pulsed imaging. J. Phys. Commun., 2019; 3(3):035013
    [6]
    Cech V, Trivedi R, Skoda D. Mechanical properties of individual layers in a-SiC:H multilayer film. Plasma Processes Polym., 2011; 8(12):1107-1115
    [7]
    Messineo M G, Rus G, Eliçabe G E et al. Layered material characterization using ultrasonic transmission. an inverse estimation methodology. Ultrasonics, 2016; 65:315-328
    [8]
    Agrawal M, Prasad A, Bellare J R et al. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy. Ultrasonics, 2016; 64:186-195
    [9]
    Tohmyoh H, Sakamoto Y. Determination of acoustic properties of thin polymer films utilizing the frequency dependence of the reflection coefficient of ultrasound. Rev. Sci. Instrum., 2015; 86(11):114901
    [10]
    王小民, 李明轩, 毛捷, 廉国选. 单层与衬底胶接结构超声反射波谱的低频特征. 声学学报, 2005; 30(4):337-342
    [11]
    毛捷, 王小民, 廉国选, 李明轩. 板底薄层的超声谐振检测分析. 声学学报, 2005; 30(2):149-152
    [13]
    Grünwald E, Nuster R, Hammer R et al. Characterization of polyimid-multi-layer thin films combining laser ultrasonic measurements and numerical evaluations. 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), IEEE, Montpellier, France, 2016
    [14]
    Schneider D, Witke T, Schwarz T et al. Testing ultra-thin films by laser-acoustics. Surf. Coat. Technol., 2003; 126(2-3):136-141
    [15]
    Schneider D, Tucker M D. Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves. Thin Solid Films,1996; 290:305-311
    [16]
    马琦, 胡文祥, 徐琰锋等. 流体镀层基底界面波的传播特性. 物理学报, 2017; 66(8):84302
    [17]
    Knopoff L. A matrix method for elastic wave problems. Bull. Seismol. Soc. Am, 1964; 54(1):431-438
    [18]
    Lowe M. Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1995; 42(4):525-542
    [19]
    Mcdonald F A. On the precursor in laser-generated ultrasound waveforms in metals. Appl. Phys. Lett., 1990; 56(3):230-232
    [20]
    宋博文. 基于Scholte界面波特性的分层薄膜材料参数超声定征研究. 硕士学位论文, 上海:同济大学, 2022
  • Related Articles

    [1]LI Cuilin, Stan E Dosso, Hefeng Dong. Interface-wave dispersion curves inversion based on nonlinear Bayesian theory[J]. ACTA ACUSTICA, 2012, 37(3): 225-231. DOI: 10.15949/j.cnki.0371-0025.2012.03.018
    [2]DENG Mingxi. Characterization of adhesive joints of composite solid layers using a nonlinear Lamb wave approach[J]. ACTA ACUSTICA, 2005, 30(6): 542-551. DOI: 10.15949/j.cnki.0371-0025.2005.06.010
    [3]LIAN Guoxuan, LI Mingxuan. Ultrasonic evaluation for the splip interface between two solids[J]. ACTA ACUSTICA, 2005, 30(1): 21-25. DOI: 10.15949/j.cnki.0371-0025.2005.01.004
    [4]XU Xiaodong, ZHANG Shuyi, ZHANG Feifei, LIU Tianzhu, K.Wasa. Characterizing of thin film materials by optical difference detection of laser generated SAW[J]. ACTA ACUSTICA, 2003, 28(3): 201-206. DOI: 10.15949/j.cnki.0371-0025.2003.03.002
    [5]SHEN Zhonghua, ZHANG Shuyi. Laser-induced ultrasonic waves in film-substrate system[J]. ACTA ACUSTICA, 2002, 27(3): 203-208. DOI: 10.15949/j.cnki.0371-0025.2002.03.003
    [6]ZHANG Rui, WAN Mingxi, LI Gang, CAO Wenwu. Low frequency ultrasonic multi-mode Lamb wave method for characterizing the ultra-thin transversely isotropic laminate composite:theory and experiment[J]. ACTA ACUSTICA, 2001, 26(1): 79-84. DOI: 10.15949/j.cnki.0371-0025.2001.01.014
    [7]QIAN Ming, WAN Mingxi, CAO Wenwu. Ultrasonic characterization of ultra-thin elastic layer using retrieve function[J]. ACTA ACUSTICA, 1999, 24(1): 71-80. DOI: 10.15949/j.cnki.0371-0025.1999.01.010
    [8]GONG Xiufen, ZHANG Dong. Nonlinear parameter tomography and biological tissue characterization[J]. ACTA ACUSTICA, 1998, 23(3): 197-203. DOI: 10.15949/j.cnki.0371-0025.1998.03.002
    [9]FENG Ruo, ZHANG Wei. Ultrasonic spectrum characterization for pig's pathological liver tissues[J]. ACTA ACUSTICA, 1994, 19(4): 252-257. DOI: 10.15949/j.cnki.0371-0025.1994.04.002
    [10]TONG Jie, DONG Yanwu, ZHENG Shufang. Comparison on the mixture rules of sound velocities used in characterizing biomedium components[J]. ACTA ACUSTICA, 1993, 18(5): 373-378. DOI: 10.15949/j.cnki.0371-0025.1993.05.008

Catalog

    Article Metrics

    Article views (257) PDF downloads (19) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return