EI / SCOPUS / CSCD 收录

中文核心期刊

A0模态Lamb波聚焦透镜的结构设计及实验研究

宋世超, 王彬, 李鹏, 钱征华, 马廷锋

宋世超, 王彬, 李鹏, 钱征华, 马廷锋. A0模态Lamb波聚焦透镜的结构设计及实验研究[J]. 声学学报, 2023, 48(1): 154-161. DOI: 10.15949/j.cnki.0371-0025.2023.01.026
引用本文: 宋世超, 王彬, 李鹏, 钱征华, 马廷锋. A0模态Lamb波聚焦透镜的结构设计及实验研究[J]. 声学学报, 2023, 48(1): 154-161. DOI: 10.15949/j.cnki.0371-0025.2023.01.026
SONG Shichao, WANG Bin, LI Peng, QIAN Zhenghua, MA Tingfeng. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves[J]. ACTA ACUSTICA, 2023, 48(1): 154-161. DOI: 10.15949/j.cnki.0371-0025.2023.01.026
Citation: SONG Shichao, WANG Bin, LI Peng, QIAN Zhenghua, MA Tingfeng. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves[J]. ACTA ACUSTICA, 2023, 48(1): 154-161. DOI: 10.15949/j.cnki.0371-0025.2023.01.026
宋世超, 王彬, 李鹏, 钱征华, 马廷锋. A0模态Lamb波聚焦透镜的结构设计及实验研究[J]. 声学学报, 2023, 48(1): 154-161. CSTR: 32049.14.11-2065.2023.01.026
引用本文: 宋世超, 王彬, 李鹏, 钱征华, 马廷锋. A0模态Lamb波聚焦透镜的结构设计及实验研究[J]. 声学学报, 2023, 48(1): 154-161. CSTR: 32049.14.11-2065.2023.01.026
SONG Shichao, WANG Bin, LI Peng, QIAN Zhenghua, MA Tingfeng. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves[J]. ACTA ACUSTICA, 2023, 48(1): 154-161. CSTR: 32049.14.11-2065.2023.01.026
Citation: SONG Shichao, WANG Bin, LI Peng, QIAN Zhenghua, MA Tingfeng. The structural design and experimental investigation of focusing lens of A0 mode Lamb waves[J]. ACTA ACUSTICA, 2023, 48(1): 154-161. CSTR: 32049.14.11-2065.2023.01.026

A0模态Lamb波聚焦透镜的结构设计及实验研究

基金项目: 

国家自然科学基金项目(11972276,12061131013,12172171)、宁波大学冲击与安全工程教育部重点实验室开放基金项目(CJ202104)、机械结构力学及控制国家重点实验室自主研究课题项目(MCMS-I-0522G01)、中央高校基本科研业务费(NS2022011)、江苏省自然科学基金项目(BK20211176)和深圳市中央引导地方科技发展专项资金(2021Szvup061)资助

详细信息
    通讯作者:

    李鹏,lipeng\_mech@nuaa.edu.cn

    钱征华,qianzh@nuaa.edu.cn

The structural design and experimental investigation of focusing lens of A0 mode Lamb waves

  • 摘要: 基于折射率的弯曲波透镜多在板结构上打孔或挖槽,这种设计破坏了原有的结构,降低了板的刚度和稳定性。鉴于此,通过在板表面镶嵌棱柱的方式设计了A0模态Lamb波的聚焦透镜。首先,详细讨论了棱柱的结构参数对Lamb波带隙的影响机理,获取了波速与结构尺寸的定量关系,并实现了透镜的结构设计;其次,有限元仿真了该聚焦透镜的工作性能,包括聚焦位置、焦点处能量分布、聚焦尺寸、工作带宽等;最后,通过实验验证了该透镜设计的正确性。研究结果表明,设计的透镜能够使弯曲波聚焦在预先设定位置,且在不改变结构参数的情况下具有一定的工作频率带宽。该透镜设计方法具有聚焦性能优越、刚度强、易于加工等优点,为声聚焦透镜在无损检测、能量收集等领域的实际应用提供了参考。
    Abstract: The previous flexural wave lenses designed via refractive index are usually perforated on the plate, which destroys the structural integrity and reduces the stiffness and stability. In order to overcome this problem, an A0-wave-based focusing lens is designed based on the interference principle, in which different prisms are distributed on the plate surfaces. Firstly, the prism influence on band gaps is systemically investigated, the quantitative relation between prism height and phase velocity is obtained, and the lens is finalized. After that, the working performance is examined via FEM software, including focusing position, energy distribution near the focusing point, focusing size, frequency region and so forth. Finally, the lens is fabricated and experimental measured, which validates the structural design. Both numerical and experimental results demonstrate that the lens in this paper can efficiently focus the incident flexural wave on a fixed position, and also can work well in a frequency region centered the target frequency. The present design scheme has the advantages of superior focusing performance, high rigidity and easy processing, which provides guidance for the practical applications of acoustic focusing lenses in the fields of nondestructive testing and energy harvesting.
  • [1] 柴洪友, 高峰. 航天器结构与机构. 北京:北京理工大学出版社, 2018:168-173
    [2] 王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用. 科技资讯, 2022; 20(14):56-58
    [3]

    Ding X Y, Zhao Y X, Deng M X et al. One-way Lamb mixing method in thin plates with randomly distributed micro-cracks. Int. J. Mech. Sci., 2020; 171:105371

    [4]

    Ilyashenko A V, Kuznetsov S V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media. Russ. J. Nondestr. Test., 2017; 53(4):243-259

    [5]

    Chen J, Li Z, Gong K. Nondestructive testing method based on Lamb waves for localization and extent of damage. Acta Mech. Solida Sin., 2017; 30(1):65-74

    [6] 焦敬品, 刘芸, 吴斌等. 金属板结构疲劳损伤二倍频兰姆波检测方法研究. 实验力学, 2021; 36(2):157-166
    [7]

    Yeum C M, Sohn H, Ihn J B. Lamb wave mode decomposition using concentric ring and circular piezoelectric transducers. Wave Motion, 2011; 48(4):358-370

    [8]

    Hua J D, Cao X W, Yi Y G et al. Time-frequency damage index of broadband Lamb wave for corrosion inspection. J. Sound Vib., 2020; 464:114985

    [9]

    Lee H, Oh J H, Seung H M et al. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging. Sci. Rep., 2016; 6:24026

    [10]

    Dong H W, Zhao S D, Wang Y S et al. Broadband single-phase hyperbolic elastic metamaterials for super-resolution imaging. Sci. Rep., 2018; 8:2247

    [11]

    Jin Y, Wang W, Khelif A et al. Elastic metasurfaces for deep and robust subwavelength focusing and imaging. Phys. Rev. Appl., 2021; 15(2):024005

    [12] 杨世礼, 钟雨豪, 颜士玲等. 弹性板波超材料研究进展. 科学通报, 2022; 67(12):1232-1248
    [13]

    Jiang X, He J, Zhang C et al. Three-dimensional ultrasound subwavelength arbitrary focusing with broadband sparse metalens. Sci. China, Phys. Mech. Astron., 2022; 65(2):224311

    [14]

    Song G Y, Huang B, Dong H Y et al. Broadband focusing acoustic lens based on fractal metamaterials. Sci. Rep., 2016; 6(1):35929

    [15]

    Nikolić V, Kaltenbacher B. Sensitivity analysis for shape optimization of a focusing acoustic lens in lithotripsy. Appl. Math. Optim., 2017; 76(2):261-301

    [16] 卫国倩, 韩建宁, 赵荣荣等. 基于声学超材料的近场线声源聚焦成像方法研究. 机械与电子, 2022; 40(2):3-7
    [17]

    Xia J, Zhang X, Sun H et al. Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces. Phys. Rev. Appl., 2018; 10(1):014016

    [18]

    Huang S, Peng L, Sun H et al. Frequency response of an underwater acoustic focusing composite lens. Appl. Acoust., 2021; 173:107692

    [19]

    Tian Y, Shen Y, Rao D et al. Metamaterial improved nonlinear ultrasonics for fatigue damage detection. Smart Mater. Struct., 2019; 28(7):75038

    [20]

    Yan X, Zhu R, Huang G et al. Focusing guided waves using surface bonded elastic metamaterials. Appl. Phys. Lett., 2013; 103(12):121901

    [21]

    Song Y H, Shen Y F. A tunable phononic crystal system for elastic ultrasonic wave control. Appl. Phys. Lett., 2021; 118(22):224104

    [22] 夏建平, 葛勇, 孙宏祥, 袁寿其, 司乔瑞, 方欣, 张淑仪, 刘晓峻. 基于近零折射率材料的声非对称聚焦透镜. 声学学报, 2019; 44(4):765-771
    [23] 陈佳惠, 蓝君, 王浩然等. 盘绕型声学超构材料的近零折射率特性研究. 南京大学学报(自然科学), 2021; 57(4):695-701
    [24] 郭威, 杨德森. 非均匀波导中的声聚焦. 物理学报, 2020; 69(7):96-107
    [25]

    Li P, Biwa S. Flexural waves in a periodic non-uniform Euler-Bernoulli beam:Analysis for arbitrary contour profiles and applications to wave control. Int. J. Mech. Sci., 2020; 188:105948

    [26] 覃赵福, 陈浩, 胡涛政等. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022; 71(3):181-190
    [27]

    Cao L, Yang Z, Xu Y et al. Pillared elastic metasurface with constructive interference for flexural wave manipulation. Mech. Syst. Signal Process., 2021; 146:107035

    [28]

    Wang W, Iglesias J, Jin Y et al. Experimental realization of a pillared metasurface for flexural wave focusing. APL Mater., 2021; 9(5):051125

    [29]

    Qiu H, Chen M, Huan Q et al. Steering and focusing of fundamental shear horizontal guided waves in plates by using multiple-strip metasurfaces. EPL, 2019; 127(4):46004

    [30]

    Yuan S, Chen A, Wang Y. Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation. J. Sound Vib., 2020; 470:115168

    [31]

    Zhu H, Semperlotti F. Anomalous Refraction of acoustic guided waves in solids with geometrically tapered metasurfaces. Phys. Rev. Lett., 2016; 117(3):034302

    [32] 范旭东, 朱一凡, 袁樱, 梁彬, 邹欣晔, 杨京, 程建春. 声学宽带多焦点聚焦. 声学学报, 2016; 41(5):613-619
    [33] 邱媛媛, 林洲, 章东. 复合法布里珀罗共振声学结构实现亚波长超声聚焦的研究. 声学学报, 2016; 41(2):189-194
    [34] 夏闻泽, 李松松, 张宸宸等. EMAT在铝板上下表面激发Lamb波的单一模态仿真研究. 电子测量技术, 2019; 42(24):17-21
    [35] 石林泽, 程斌. 钢桥面板疲劳裂纹监测的Lamb导波传播特征的机理研究. 公路, 2022; 67(7):151-156
    [36]

    Li P, Biwa S. The SH0 wave manipulation in graded stubbed plates and its application to wave focusing and frequency separation. Smart Mater. Struct., 2019; 28(11):115004

    [37]

    Raghavan A, Cesnik C E S. Finite-dimensional piezoelectric transducer modeling for guided wave based structural health, monitoring. Smart Mater. Struct., 2005; 14(6):1448-1461

    [38]

    Koduru J P, Rose J L. Transducer arrays for omnidirectional guided wave mode control in plate like structures. Smart Mater. Struct., 2012; 22(1):15010

  • 期刊类型引用(1)

    1. 徐军,李鹏,尚闫,钱征华,马廷锋. 凹透镜实现亚波长聚焦的理论和实验研究. 力学学报. 2023(08): 1742-1752 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  214
  • HTML全文浏览量:  4
  • PDF下载量:  30
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-10-19
  • 网络出版日期:  2023-01-17
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回