EI / SCOPUS / CSCD 收录

中文核心期刊

强弱耦合板—腔系统的声辐射模态计算与分析

廖金龙, 朱海潮, 侯九霄, 袁苏伟

廖金龙, 朱海潮, 侯九霄, 袁苏伟. 强弱耦合板—腔系统的声辐射模态计算与分析[J]. 声学学报, 2022, 47(6): 739-747. DOI: 10.15949/j.cnki.0371-0025.2022.06.001
引用本文: 廖金龙, 朱海潮, 侯九霄, 袁苏伟. 强弱耦合板—腔系统的声辐射模态计算与分析[J]. 声学学报, 2022, 47(6): 739-747. DOI: 10.15949/j.cnki.0371-0025.2022.06.001
LIAO Jinlong, ZHU Haichao, HOU Jiuxiao, YUAN Suwei. Calculation and analysis for acoustic radiation mode of strong and weak plate-cavity coupling system[J]. ACTA ACUSTICA, 2022, 47(6): 739-747. DOI: 10.15949/j.cnki.0371-0025.2022.06.001
Citation: LIAO Jinlong, ZHU Haichao, HOU Jiuxiao, YUAN Suwei. Calculation and analysis for acoustic radiation mode of strong and weak plate-cavity coupling system[J]. ACTA ACUSTICA, 2022, 47(6): 739-747. DOI: 10.15949/j.cnki.0371-0025.2022.06.001

强弱耦合板—腔系统的声辐射模态计算与分析

基金项目: 

国家自然科学基金项目(51675529)和青年人才托举工程项目(2021-JCJQ-QT-008)资助

详细信息
    通讯作者:

    朱海潮, haiczhu@163.com

Calculation and analysis for acoustic radiation mode of strong and weak plate-cavity coupling system

  • 摘要: 针对板—腔耦合系统的声辐射模态(ARM)计算问题,提出了一种基于能量原理的声辐射模态计算方法,该方法从能量原理的动力学方程构建起声压模态幅值和结构模态幅值的关系,通过将声势能表示为结构模态幅值向量的二次型形式,得到板—腔耦合系统的声辐射模态,弥补了前人理论在解决声腔为阻抗壁面和结构—声为强耦合条件时的不足。通过数值算例验证了本文计算方法的正确性和有效性,在此基础上分析了壁面和结构—声耦合条件变化对声辐射模态特性的影响。结果表明:声辐射模态辐射效率曲线会在声腔模态频率处产生峰值,阻抗壁面的引入会降低声辐射模态辐射效率在峰值处的幅值,并且阻抗值越小,幅值衰减效应越明显,具体表现为声势能曲线在辐射效率峰值频率处幅值会下降;强耦合条件下低频段声势能响应主要由弹性板结构模态激发,响应峰值密度更高,幅值更低。低频同频宽的声辐射模态辐射效率峰值数更少,峰值频率更高。
    Abstract: A numerical method is proposed for analyzing the Acoustic Radiation Modes (ARM) of a plate-cavity coupled system based on the energy principle. In present method, the relationship between the sound pressure mode amplitude and the structural mode amplitude is constructed through the dynamic equations and the ARM is obtained by expressing the acoustic potential energy as a quadratic form of the structural mode amplitude. Compared to the previous theory, the present approach makes up the shortcomings in case of the acoustic cavity is an impedance wall or the structure-acoustic strong coupling. The accuracy and precision of present method are validated through numerical examples. Then the effects of wall damping and structure-acoustic coupling conditions on the characteristics of ARM are investigated. The numerical results show that the ARM radiation efficiency curve will peak at the acoustic mode frequencies. The peak value can be effectively suppressed by introducing impedance-walled boundary conditions, and the more pronounced the amplitude decay with the impedance value decreases. Specifically, the amplitude of the acoustic potential energy at the peak frequency of ARM radiation efficiency curve will decrease; Under strong coupling conditions, the acoustic potential energy response in low frequency is mainly motivated by the structural mode, and the response peak density is higher, and the amplitude is lower. The ARM radiation efficiency peak number is less, and the peak frequency is higher in the same bandwidth low frequency.
  • [1] 孙运平, 孙红灵, 张维, 王晗, 杨军. 充液管路系统流体声与结构声的复合有源控制. 声学学报, 2019; 44(4):780-787
    [2]

    Hasheminejad S M, Jamalpoor A. Control of sound transmission into a hybrid double-wall sandwich cylindrical shell. J. Vib. Control, 2021; 28(5——6):780-787

    [3]

    Hendricks D R, Johnson W R, Sommerfeldt D S et al. Experimental active structural acoustic control of simply supported plates using a weighted sum of spatial gradients. J. Acoust. Soc. Am., 2014; 136(5):2598

    [4]

    Milton J, Cheer J, Daley S. Active structural acoustic control using an experimentally identified radiation resistance matrix. J. Acoust. Soc. Am., 2020, 147(3):1459-1468

    [5]

    Tsutomu K, Kimihiko N. Active control of sound transmission into an enclosure using structural modal filters. J. Sound Vib, 2018; 431:328-345

    [6] 张军, 姜哲. 基于声辐射模态的有源结构声辐射系统鲁棒H_∞控制. 振动与冲击, 2010; 29(4):135-137
    [7]

    Hesse C, Papantoni V, Algermissen S et al. Frequency-independent radiation modes of interior sound radiation:Experimental study and global active control. J. Sound Vib., 2017; 401:204-213

    [8]

    Sun Y, Yang T, Chen Y. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells. J. Sound Vib., 2018; 424:64-77

    [9] 邱亮, 姜哲. 基于声辐射模态的粘弹性阻尼板声功率最小化研究. 振动与冲击, 2011; 30(1):40-43
    [10]

    Borgiotti, Giorgio V. The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements. J. Acoust. Soc. Am., 1990; 88(4):1884-1893

    [11]

    Snyder S D, Tanaka N. On feedforward active control of sound and vibration using vibration error signals. J. Acoust. Soc. Am., 1993; 94(4):2181-2193

    [12] 靳国永, 杨铁军, 刘志刚. 基于声辐射模态的有源结构声传入及其辐射控制. 声学学报, 2009; 34(3):256-265
    [13] 靳国永, 刘志刚, 杨铁军. 双层板腔结构声传输及其有源控制研究. 声学学报, 2010; 35(6):665-677
    [14] 靳国永, 张洪田, 刘志刚等. 基于声辐射模态的双层板声传输有源控制数值仿真和分析研究. 振动工程学报, 2011; 24(4):435-443
    [15]

    Hesse C, Perez J V, Sinapius M. Frequency-independent radiation modes of interior sound radiation:An analytical study. J. Sound Vib., 2017; 392:31-40

    [16] 毛荣富, 苏常伟, 朱海潮. 弱耦合封闭声腔的声辐射模态理论与计算. 声学学报, 2019; 44(3):297-302
    [17]

    Jayachandran V, Hirsch S M, Sun J Q. On the numerical modelling of interior sound fields by the modal function expansion approach. J. Sound Vib., 1998; 210(2):243-254

    [18]

    Jin G Y, Chen Y H, Liu Z G. A Chebyshev——Lagrangian method for acoustic analysis of a rectangular cavity with arbitrary impedance walls. Appl. Acoust., 2014; 78:33-42

    [19]

    Du J T, Li W L, Xu H A et al. Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges. J. Acoust. Soc. Am., 2012; 131(4):2799-2810

    [20] 廖金龙, 朱海潮, 侯九霄. 结构声强耦合腔振声响应预报研究. 振动与冲击, 2022; 41(5):83-89
    [21] 邢雪, 杜敬涛, 赵雨皓, 刘志刚. 考虑任意阻抗壁面条件管腔结构声场特性分析. 声学学报, 2019; 44(3):285-296
    [22]

    Agarwal R P, O'Regan D. Legendre polynomials and functions//Ordinary and partial differential equations. Universitext, Springer, New York, 2009:47-56

    [23] 沈进中, 姜媛媛, 朱洪波. 关于分块矩阵求逆和行列式的方法探究与应用. 安阳工学院学报, 2019; 18(4):91-94
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  240
  • HTML全文浏览量:  1
  • PDF下载量:  28
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-01-08
  • 修回日期:  2022-05-17
  • 网络出版日期:  2022-11-04
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回