EI / SCOPUS / CSCD 收录

中文核心期刊

ZHU Zhe-min, DU Gong-huan, GONG Xiu-fen. STUDY ON REDUCTION OF NONLINEAR DISTORTION OF FINITE AMPLITUDE SOUND WAVE[J]. ACTA ACUSTICA, 1981, 6(3): 189-193. DOI: 10.15949/j.cnki.0371-0025.1981.03.009
Citation: ZHU Zhe-min, DU Gong-huan, GONG Xiu-fen. STUDY ON REDUCTION OF NONLINEAR DISTORTION OF FINITE AMPLITUDE SOUND WAVE[J]. ACTA ACUSTICA, 1981, 6(3): 189-193. DOI: 10.15949/j.cnki.0371-0025.1981.03.009

STUDY ON REDUCTION OF NONLINEAR DISTORTION OF FINITE AMPLITUDE SOUND WAVE

More Information
  • Received Date: January 15, 1980
  • Available Online: August 21, 2022
  • The production of an intense sound field with nondistortion (or low distortion) is an interesting problem in nonlinear acoustics. In this article, nonlinear interaction process between three sound waves with frequencies f1,f2 and f3 respectively has been discussed. Let f1 is frequency of the finite amplitude wave and f2=2f1,f3=3f1. On the basis of Penlon's theory concerning the propagation of multiple frequency finite amplitude wave the authors have pointed out that by controlling the original phases and amplitudes of the two waves with frequencies f2 and f3 respectively, it is possible to cancel out the second and third harmonics of the finite amplitude wave at some receiving points, which shows that the progressive nonlinear distortion is obviously reduced.
  • Related Articles

    [1]TENG Xudong, GUO Xiasheng, ZHANG Dong. Theoretical and experimental investigations of non-classical nonlinear acoustic propagation in a conical bar[J]. ACTA ACUSTICA, 2019, 44(6): 1053-1059. DOI: 10.15949/j.cnki.0371-0025.2019.06.011
    [2]HOU Wei, PAN Haoran, SONG Weihua, JING Xiaodong, SUN Xiaofeng. Numerical simulation of nonlinear propagation of sound waves in a finite horn[J]. ACTA ACUSTICA, 2015, 40(4): 569-578. DOI: 10.15949/j.cnki.0371-0025.2015.04.010
    [3]LIU Wei, YANG Jun, TIAN Jing. Time-domain modeling of finite-amplitude sound beams in three-dimensional Cartesian coordinate system[J]. ACTA ACUSTICA, 2011, 36(4): 349-357. DOI: 10.15949/j.cnki.0371-0025.2011.04.008
    [4]ZHU Jinlin, LIU Xiaozhou, ZHOU Dao, GONG Xiufen. Nonclassical nonlinear sound transmission in solid with cracks[J]. ACTA ACUSTICA, 2009, 34(3): 234-241. DOI: 10.15949/j.cnki.0371-0025.2009.03.005
    [5]ZHAO Xiang, XU Jianxue. Numerical investigation of bifurcation in finite-amplitude standing wave field[J]. ACTA ACUSTICA, 1999, 24(4): 424-428. DOI: 10.15949/j.cnki.0371-0025.1999.04.011
    [6]LIU Ke, MAA Dah-You. Experimental investigation of bifurcation in finite-ampntode standsg wave field[J]. ACTA ACUSTICA, 1995, 20(3): 170-173. DOI: 10.15949/j.cnki.0371-0025.1995.03.002
    [7]MAA Dah-You. Theory of finite-amplitude standing wave[J]. ACTA ACUSTICA, 1990, 15(5): 354-363. DOI: 10.15949/j.cnki.0371-0025.1990.05.005
    [8]CHEN Jianfeng, ZHAO Songling. Propagation of finite amplitude sound pulses in tubes[J]. ACTA ACUSTICA, 1990, 15(1): 28-35. DOI: 10.15949/j.cnki.0371-0025.1990.01.005
    [9]SHI Tao, GONG Xiufen. DETERMINATION OF ACOUSTIC NONLINEARITY PARMEER B/A IN LOSSY MEDIA BY FINITE AMPLITUDE METHOD[J]. ACTA ACUSTICA, 1989, 14(2): 103-109. DOI: 10.15949/j.cnki.0371-0025.1989.02.004
    [10]DU Gong-huan, GONG Xiu-fen, ZHU Zhe-min. THE THEORY OF NONLINEAR INTERACTION OF FINITE AMPLITUDE RANDOM SOUND WAVES[J]. ACTA ACUSTICA, 1982, 7(1): 1-7. DOI: 10.15949/j.cnki.0371-0025.1982.01.001

Catalog

    Article Metrics

    Article views (50) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return