EI / SCOPUS / CSCD 收录

中文核心期刊

WU Xintong, LIU Yu, MA Xiaochuan, MA Zhongjing. Adaptive measurement conversion for underwater target tracking with unknown non-Gaussian noise[J]. ACTA ACUSTICA, 2024, 49(4): 671-682. DOI: 10.12395/0371-0025.2024031
Citation: WU Xintong, LIU Yu, MA Xiaochuan, MA Zhongjing. Adaptive measurement conversion for underwater target tracking with unknown non-Gaussian noise[J]. ACTA ACUSTICA, 2024, 49(4): 671-682. DOI: 10.12395/0371-0025.2024031

Adaptive measurement conversion for underwater target tracking with unknown non-Gaussian noise

More Information
  • PACS: 
  • Received Date: January 24, 2024
  • Revised Date: April 08, 2024
  • Aiming at the non-Gaussian polar-Cartesian underwater target tracking problem with unknown measurement outliers, an iterative converted measurement Student’s t filter based on the variational Bayesian method (VBICMSTF) is proposed. Range and azimuth estimations of active sonar target are taken as nonlinear measurement based on polar coordinates, and the pseudo-linear measurement after unbiased conversion is modeled approximately using student’s t distribution. Then, the posterior distributions of the pseudo-linear measurement scale array and the target state are iteratively updated by the variational Bayesian method. During the iteration process, the updated target position is used to correct the prior calculation of the second moment of measurement conversion, forming a prior-posterior update loop. Simulation and lake experimental results show that the VBICMSTF reduces the tracking error by more than 25% compared with the pseudo-linear Student’s t distribution variational Bayesian algorithm, and maintains the consistency of filtering in the strong nonlinear tracking scene with unknown non-Gaussian measurement noise.

  • [1]
    郭鑫, 葛凤翔, 郭良浩. 改进的自适应Kalman滤波及其在水声机动目标跟踪中的应用. 声学学报, 2011; 36(6): 611−618 DOI: 10.15949/j.cnki.0371-0025.2011.06.002
    [2]
    马艳, 刘小东. 状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用. 兵工学报, 2019; 40(2): 361−368 DOI: 10.3969/j.issn.1000-1093.2019.02.016
    [3]
    石桂欣, 鄢社锋, 刘宇. 水下目标跟踪的改进非线性滤波快速算法. 应用声学, 2020; 39(1): 89−96 DOI: 10.11684/j.issn.1000-310X.2020.01.011
    [4]
    Mo L, Song X, Zhou Y, et al. Unbiased converted measurements for tracking. IEEE Trans. Aerosp. Electron. Syst., 1998; 34(3): 1023−1027 DOI: 10.1109/7.705921
    [5]
    李可非, 马晓川, 刘宇, 等. 基于转换量测容积卡尔曼滤波器带多普勒量测的目标跟踪算法. 控制与决策, 2021; 36(6): 1425−1434 DOI: 10.13195/j.kzyjc.2019.1070
    [6]
    Bordonaro S, Willett P, Bar-Shalom Y, et al. Converted measurement sigma point Kalman filter for bistatic sonar and radar tracking. IEEE Trans. Aerosp. Electron. Syst., 2018; 55(1): 147−159 DOI: 10.1109/TAES.2018.2849179
    [7]
    Bordonaro S, Willett P, Bar-Shalom Y. Decorrelated unbiased converted measurement Kalman filter. IEEE Trans. Aerosp. Electron. Syst., 2014; 50(2): 1431−1444 DOI: 10.1109/TAES.2014.120563
    [8]
    石桂欣, 鄢社锋, 郝程鹏, 等. 不完全量测下长基线系统的水下目标跟踪算法. 声学学报, 2019; 44(4): 480−490 DOI: 10.15949/j.cnki.0371-0025.2019.04.009
    [9]
    张博轩, 杨益新, 侯翔昊. 量测不确定量测噪声不确定情况下的水下多目标稳健方位跟踪. 声学学报, 2023; 48(4): 605−617 DOI: 10.15949/j.cnki.0371-0025.2023.04.027
    [10]
    Stojanovic V, Nedic N. Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise. Int. J. Robust Nonlinear Control, 2016; 26(3): 445−460 DOI: 10.1002/rnc.3319
    [11]
    Li W, Sun S, Jia Y, et al. Robust unscented Kalman filter with adaptation of process and measurement noise covariances. Digit. Signal Process., 2016; 48: 93−103 DOI: 10.1016/j.dsp.2015.09.004
    [12]
    Roth M, Ozkan E, Gustafsson F. A Student's t filter for heavy tailed process and measurement noise. International Conference on Acoustics, Speech and Signal Processing, IEEE, Vancouver, BC, Canada, 2013: 5770−5774
    [13]
    Huang Y L, Zhang Y G, Li N, et al. Robust student's t based nonlinear filter and smoother. IEEE Trans. Aerosp. Electron. Syst., 2017; 52(5): 2586−2596 DOI: 10.1109/TAES.2016.150722
    [14]
    Huang Y L, Zhang Y G. Robust Student's t based stochastic cubature filter for nonlinear systems with heavy-tailed process and measurement noises. IEEE Access, 2017; 5: 7964−7974 DOI: 10.1109/ACCESS.2017.2700428
    [15]
    Huang Y L, Zhang Y G, Chambers J A. A novel Kullback-Leilber divergence minimization-based adaptive Student's t filter. IEEE Trans. Signal Process., 2019; 67(20): 5417−5432 DOI: 10.1109/TSP.2019.2939079
    [16]
    Bai M, Sun C, Zhang Y. A robust generalized t distribution-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst., 2022; 58(5): 4771−4781 DOI: 10.1109/TAES.2022.3160984
    [17]
    Wang G, Yang C, Ma X. A novel robust nonlinear Kalman filter based on multivariate Laplace distribution. IEEE Trans. Circuits Syst. II: Express Briefs, 2021; 68(7): 2705−2709 DOI: 10.1109/TCSII.2021.3052351
    [18]
    刘灿, 王辉, 林德福, 等. 存在非高斯重尾分布噪声的纯方位目标跟踪算法. 兵工学报, 2023; 44(5): 1469−1481 DOI: 10.12382/bgxb.2022.0058
    [19]
    Wang K, Li X, Wu P. Modified unbiased converted measurement Kalman filter with outlier Detection. 42nd Chinese Control Conference, Tianjin, China, 2023: 3660−3665
    [20]
    Bishop C M. Pattern recognition and machine learning (Information science and statistics). New York: Springer, 2006
    [21]
    Tzikas D G, Likas A C, Galatsanos N. The variational approximation for Bayesian inference. IEEE Signal Process. Mag., 2008; 25(6): 131−146 DOI: 10.1109/MSP.2008.929620
    [22]
    Yang X S, Zhang W A, Liu A D. Linear fusion estimation for range-only target tracking with nonlinear transformation. IEEE Trans. Ind. Electron., 2020; 16(10): 6403−6412 DOI: 10.1109/TII.2019.2955931
  • Related Articles

    [1]LI Weizhe, HAN Xiao, WEI Li, YIN Jingwei. Underwater acoustic channel estimation based on variational Bayesian inference under reliable acoustic path in deep sea[J]. ACTA ACUSTICA, 2025, 50(3): 768-777. DOI: 10.12395/0371-0025.2024162
    [2]LIANG Yaokun, YU Hua, LI Zhongyuan, JI Fei, CHEN Yankun. A joint estimation method of under-ice acoustic channel and impulsive noise based on multi-task sparse Bayesian learning[J]. ACTA ACUSTICA, 2025, 50(3): 747-756. DOI: 10.12395/0371-0025.2024428
    [3]WANG Ran, BAI Yue, YU Liang, DONG Guangming. Bayesian compressive sensing for identifying tonal acoustic modes of fan noise in the duct[J]. ACTA ACUSTICA, 2025, 50(1): 187-200. DOI: 10.12395/0371-0025.2023116
    [4]GE Wei, JIAO Huakun, TONG Wentao, SHENG Xueli, HAN Xiao. Variational Bayesian inference-based joint estimation method for underwater acoustic OFDM under impulsive interference[J]. ACTA ACUSTICA, 2024, 49(5): 1051-1060. DOI: 10.12395/0371-0025.2023097
    [5]ZHANG Boxuan, YANG Yixin, HOU Xianghao. Robust underwater multi-target direction-of-arrival tracking with uncertain measurement noise[J]. ACTA ACUSTICA, 2023, 48(4): 605-617. DOI: 10.15949/j.cnki.0371-0025.2023.04.027
    [6]ZHU Hanhao, XUE Yangyang, CUI Zhiqiang, WANG Qile. Inversion of shallow seabed structure and geoacoustic parameters with ship radiated noise Bayesian method[J]. ACTA ACUSTICA, 2022, 47(6): 765-776. DOI: 10.15949/j.cnki.0371-0025.2022.06.009
    [7]BO Liankun, XIONG Jinyu, ZHANG Xiaoyong, LIU Chengyuan. Bayesian geoacoustic inversion of self-noise in shallow water[J]. ACTA ACUSTICA, 2019, 44(6): 1017-1026. DOI: 10.15949/j.cnki.0371-0025.2019.06.007
    [8]ZHOU Mingyang, GUO Lianghao, YAN Chao. Improved Bayesian compressive sensing-based direction of arrival estimation[J]. ACTA ACUSTICA, 2019, 44(6): 961-969. DOI: 10.15949/j.cnki.0371-0025.2019.06.002
    [9]LIANG Guolong, HUI Junying, FENG Haihong, GUI Tong. A parameter estimator based on adaptive noise canceller[J]. ACTA ACUSTICA, 1996, 21(S1): 685-692. DOI: 10.15949/j.cnki.0371-0025.1996.S1.037
    [10]LI Qi-hu. AN INTRODUCTION OF MULTI-BEAM ADAPTIVE NOISE CANCELLING SYSTEM[J]. ACTA ACUSTICA, 1980, 5(3): 221-230. DOI: 10.15949/j.cnki.0371-0025.1980.03.008
  • Cited by

    Periodical cited type(2)

    1. 刘新超,吴信立,朱伟星. 基于超声波的储能站锂电池火灾极早期检测技术. 电力与能源. 2025(02): 126-129+134 .
    2. 李旺斐,邓庆田,许爽,李新波,宋学力,温金鹏. 层合多孔结构拉剪力学行为分析. 塑性工程学报. 2024(05): 208-223 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (113) PDF downloads (47) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return