EI / SCOPUS / CSCD 收录

中文核心期刊

LU Bo, HUANG Shaojian, LI Ganxian, LIU Shuzhuo. An experimental study on sediment sound velocity varances in the stress-strain course of being controlled[J]. ACTA ACUSTICA, 2000, 25(5): 411-415. DOI: 10.15949/j.cnki.0371-0025.2000.05.005
Citation: LU Bo, HUANG Shaojian, LI Ganxian, LIU Shuzhuo. An experimental study on sediment sound velocity varances in the stress-strain course of being controlled[J]. ACTA ACUSTICA, 2000, 25(5): 411-415. DOI: 10.15949/j.cnki.0371-0025.2000.05.005

An experimental study on sediment sound velocity varances in the stress-strain course of being controlled

More Information
  • PACS: 
  • Received Date: May 31, 1999
  • Revised Date: October 18, 1999
  • Available Online: July 31, 2022
  • In the stress-strain course of being controlled,the sound velocity of each type seafloor sediment is variance as the developing of the strain course.The experimontal analysing show three conclusions at last:(1) The maximum sound velocity come out at stress peak value,(2) The maximum sound velocity come out at the phase of not loading,(3) The maximum sound velocity come out at the end of strain course.These results relate to the physical mechanic features and structural characteristics of sediments.
  • Related Articles

    [1]ZOU Dapeng, LÜ Hengsheng, KAN Guangming, LIU Wei, XIAO Tibing. Environmental factors affecting acoustic velocity of seafloor surface sediments[J]. ACTA ACUSTICA, 2021, 46(2): 227-236. DOI: 10.15949/j.cnki.0371-0025.2021.02.007
    [2]ZHENG Guangying, HUANG Yiwang, HUA Jian. Reflection of acoustic waves at a water-gassy sediment interface[J]. ACTA ACUSTICA, 2018, 43(6): 961-967. DOI: 10.15949/j.cnki.0371-0025.2018.06.011
    [3]ZOU Dapeng. Relationship between the sound speed ratio of the compressional wave and the physical characteristics of seafloor sediments[J]. ACTA ACUSTICA, 2018, 43(1): 41-51. DOI: 10.15949/j.cnki.0371-0025.2018.01.005
    [4]YU Shengqi, HUANG Yiwang, LIU Baohua, WANG Fei, ZHENG Guangying. A wide-band method for sound speed and attenuation measurement in sediments[J]. ACTA ACUSTICA, 2015, 40(5): 682-694. DOI: 10.15949/j.cnki.0371-0025.2015.05.009
    [5]LONG Jianjun, LI Ganxian. Theoretical relations between sound velocity and physical-mechanical properties for seafloor sediments[J]. ACTA ACUSTICA, 2015, 40(3): 462-468. DOI: 10.15949/j.cnki.0371-0025.2015.03.014
    [6]QIAN Zuwen. Sound speed in air-filled sands and marine shallow-layer sediments (sands)[J]. ACTA ACUSTICA, 2008, 33(5): 385-388. DOI: 10.15949/j.cnki.0371-0025.2008.05.009
    [7]WANG Zhengyin, MA Yuanliang, G. Gimenez D. Vray. Classification of lake bottom sediments using a wideband active sonar system[J]. ACTA ACUSTICA, 1996, 21(S1): 517-524. DOI: 10.15949/j.cnki.0371-0025.1996.S1.015
    [8]TANG Ying-wu. Reflection of acoustic waves from marine sediment[J]. ACTA ACUSTICA, 1994, 19(4): 278-289. DOI: 10.15949/j.cnki.0371-0025.1994.04.005
    [9]TANG Ying-wu. The flow resistance and structure factor in sediment[J]. ACTA ACUSTICA, 1994, 19(3): 202-207. DOI: 10.15949/j.cnki.0371-0025.1994.03.006
    [10]MENG Jin-sheng, GUAN Dian-hua. ACOUSTICAL CLASSIFICATION OF SEA FLOOR SEDIMENTS[J]. ACTA ACUSTICA, 1982, 7(6): 337-343. DOI: 10.15949/j.cnki.0371-0025.1982.06.001
  • Cited by

    Periodical cited type(4)

    1. 梁国龙,张博宇,齐滨,郝宇,杜致尧,李想. 无源声呐水下多目标融合跟踪方法. 声学学报. 2024(03): 501-512 . 本站查看
    2. 吴孙勇,张小琪,李明,余润华. 基于势平衡多伯努利滤波的多传感器纯方位多目标跟踪. 信号处理. 2024(11): 2050-2061 .
    3. 齐滨,田金,邹男,梁国龙. 量测驱动的自适应似然无源弱目标跟踪. 声学学报. 2023(05): 959-970 . 本站查看
    4. 徐文,吴雨桑,张婷. 多阵列水下多目标跟踪的分布式算法研究. 信号处理. 2023(10): 1764-1774 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (39) PDF downloads (5) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return