EI / SCOPUS / CSCD 收录

中文核心期刊

YU Yibiao, WANG Shuozhong. Text-dependent speaker identification based on mutual information matching model[J]. ACTA ACUSTICA, 2004, 29(5): 462-466. DOI: 10.15949/j.cnki.0371-0025.2004.05.014
Citation: YU Yibiao, WANG Shuozhong. Text-dependent speaker identification based on mutual information matching model[J]. ACTA ACUSTICA, 2004, 29(5): 462-466. DOI: 10.15949/j.cnki.0371-0025.2004.05.014

Text-dependent speaker identification based on mutual information matching model

More Information
  • PACS: 
  • Received Date: January 07, 2003
  • Revised Date: May 12, 2003
  • Available Online: August 03, 2022
  • The Mutual Information Matching model (MIM) was proposed for speaker recognition based on the mutual information theory. Both of statistical and time-variant features of speech signal can be processed effectively, robustly and synchronously in MIM. It is presented a description of MIM principle and then evaluated its application to text-dependent speaker identification with comparison to other two typical models, DTW and GMM. The identification experiments on 30 speakers including 18 males and 12 females show that MIM model has better performance with the identification error rate of 1.33% if LPCC was used as feature parameters.
  • Related Articles

    [1]ZHONG Weifeng, FANG Xiang, FAN Cunhang, WEN Zhengqi, TAO Jianhua. Fusion of deep shallow features and models for speaker recognition[J]. ACTA ACUSTICA, 2018, 43(2): 263-272. DOI: 10.15949/j.cnki.0371-0025.2018.02.016
    [2]WU Di, TAO Zhi, ZHANG Xiaojun, ZHOU Yan, PAN Xinyu, XIAO Zhongzhe, ZHAO Heming. Perception auditory scene analysis for speaker recognition[J]. ACTA ACUSTICA, 2016, 41(2): 260-272. DOI: 10.15949/j.cnki.0371-0025.2016.02.015
    [3]ZHANG Wenlin, QU Dan, LI Bicheng. Speaker adaptation using matching pursuit[J]. ACTA ACUSTICA, 2014, 39(4): 523-530. DOI: 10.15949/j.cnki.0371-0025.2014.04.017
    [4]WU Haiyang, YANG Feiran, ZHOU Lin, WU Zhenyang. Feature compensation algorithm based on vector Taylor series for speaker recognition[J]. ACTA ACUSTICA, 2013, 38(1): 105-112. DOI: 10.15949/j.cnki.0371-0025.2013.01.013
    [5]GU Xiaojiang, ZHAO Heming, LÜ Gang. An application in whispered speaker identification using feature and model hybrid compensation method[J]. ACTA ACUSTICA, 2012, 37(2): 198-203. DOI: 10.15949/j.cnki.0371-0025.2012.02.008
    [6]JIANG Tao, HAN Ji-qing, ZHENG Tie-ran. Gaussian mixture model compensation method using shift factor for speaker recognition[J]. ACTA ACUSTICA, 2011, 36(6): 658-664. DOI: 10.15949/j.cnki.0371-0025.2011.06.009
    [7]CHEN Cunbao, ZHAO Li, ZOU Cairong. Speaker verification using speaker model synthesis and feature mapping based on maximum-likelihood linear regression[J]. ACTA ACUSTICA, 2011, 36(1): 81-87. DOI: 10.15949/j.cnki.0371-0025.2011.01.010
    [8]BAO Yongqiang, ZHAO Li, ZOU Cairong. Text-independent speaker recognition using normalization compensation transformation[J]. ACTA ACUSTICA, 2006, 31(1): 55-60. DOI: 10.15949/j.cnki.0371-0025.2006.01.009
    [9]YU Yibiao, WANG Shuozhong. Text-independent speaker identification using complete feature corpus and mutual information evaluation[J]. ACTA ACUSTICA, 2005, 30(6): 536-541. DOI: 10.15949/j.cnki.0371-0025.2005.06.009
    [10]YUE Xicai, WU Xiaoyu, ZHENG Chongxun. Text-independent speaker identification using neural array networks[J]. ACTA ACUSTICA, 2000, 25(3): 230-234. DOI: 10.15949/j.cnki.0371-0025.2000.03.006

Catalog

    Article Metrics

    Article views (30) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return