EI / SCOPUS / CSCD 收录

中文核心期刊

LI Peixiao, LIN Weijun, ZHANG Xiumei, WANG Xiuming. Comparisons for regular splitting and non-splitting perfectly matched layer absorbing boundary conditions[J]. ACTA ACUSTICA, 2015, 40(1): 44-53. DOI: 10.15949/j.cnki.0371-0025.2015.01.006
Citation: LI Peixiao, LIN Weijun, ZHANG Xiumei, WANG Xiuming. Comparisons for regular splitting and non-splitting perfectly matched layer absorbing boundary conditions[J]. ACTA ACUSTICA, 2015, 40(1): 44-53. DOI: 10.15949/j.cnki.0371-0025.2015.01.006

Comparisons for regular splitting and non-splitting perfectly matched layer absorbing boundary conditions

More Information
  • PACS: 
    • 43.20  (General linear acoustics)
  • Received Date: April 12, 2013
  • Revised Date: October 31, 2013
  • Available Online: June 22, 2022
  • Two different perfectly matched layer (PML), including regular splitting PML (SPML) and non-splitting PML (NPML) which are applied in elastic media and poroelastic media are compared in computational cost, storage consumption and absorption effect. In order to compare the absorption effect, the wavefield snapshots of the two PMLs are shown, then the boundary reflection amplitude with the variation of time under a fixed angle of incidence is caculated and analysed using the waveforms near the absorbing boundary, and the boundary reflection coefficients varing with the incident angle is caculated. The simulation indicates that for both the elastic and poroelastic media, NPML can absorb waves more efficiently than SPML, especially when the incident angle is small, but NPML has a lager calculational complexity and storage cost.
  • Related Articles

    [1]CHEN Wenjian, LI Fubing, YIN Jingwei, ZHOU Shunbo, SUN Hui, LANG Pengyuan. A Kirchhoff-approximation numerical model for three-dimensional acoustic scattering from rough under-ice surfaces[J]. ACTA ACUSTICA, 2021, 46(1): 1-10. DOI: 10.15949/j.cnki.0371-0025.2021.01.001
    [2]SONG Yang. A numerical study on infrasound propagation in stratospheric duct[J]. ACTA ACUSTICA, 2017, 42(6): 747-754. DOI: 10.15949/j.cnki.0371-0025.2017.06.014
    [3]WANG Ruijia, QIAO Wenxiao, LU Junqiang. A finite difference modeling of acoustic wave field in the near-borehole formation excited by an arcuate source[J]. ACTA ACUSTICA, 2017, 42(1): 76-84. DOI: 10.15949/j.cnki.0371-0025.2017.01.010
    [4]HOU Wei, PAN Haoran, SONG Weihua, JING Xiaodong, SUN Xiaofeng. Numerical simulation of nonlinear propagation of sound waves in a finite horn[J]. ACTA ACUSTICA, 2015, 40(4): 569-578. DOI: 10.15949/j.cnki.0371-0025.2015.04.010
    [5]MA Youneng, YU Jinhua, WANG Yuanyuan. Unsplit perfectly matched layer for second-order acoustic wave equation[J]. ACTA ACUSTICA, 2013, 38(6): 681-686. DOI: 10.15949/j.cnki.0371-0025.2013.06.015
    [6]ZHAO Yun, CENG Xinwu. Numerical model research for the sound energy conversion in air-modulated speaker[J]. ACTA ACUSTICA, 2011, 36(3): 291-300. DOI: 10.15949/j.cnki.0371-0025.2011.03.008
    [7]LI Yifeng, LI Guofeng, WANG Yun. Application of convolution perfectly matched layer in finite element method calculation for 2D acoustic wave[J]. ACTA ACUSTICA, 2010, 35(6): 601-607. DOI: 10.15949/j.cnki.0371-0025.2010.06.002
    [8]ZHAO Xiang, XU Jianxue. Numerical investigation of bifurcation in finite-amplitude standing wave field[J]. ACTA ACUSTICA, 1999, 24(4): 424-428. DOI: 10.15949/j.cnki.0371-0025.1999.04.011
    [9]WANG Shuozhong. An efficient absorbing boundary for finite-difference time-domain field modeling in acoustics[J]. ACTA ACUSTICA, 1997, 22(1): 11-21. DOI: 10.15949/j.cnki.0371-0025.1997.01.002
    [10]SONG ZHI-YONG, QIAN ZHI-SHENG, TU YAN. DISPERSIVE THEORY AND NUMERICAL COMPUTATION OF THE ACOUSTIC-GRAVITY WAVE IN TWO-LAYER MODEL[J]. ACTA ACUSTICA, 1983, 8(2): 100-106. DOI: 10.15949/j.cnki.0371-0025.1983.02.005

Catalog

    Article Metrics

    Article views (85) PDF downloads (28) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return