EI / SCOPUS / CSCD 收录

中文核心期刊

GUO Gege, SUN Hongling, SUN Luyang, CAO Shengnan, YANG Jun. Influence of the near field of secondary source and the elasticity of pipe wall on active noise control performance of liquid-filled pipe[J]. ACTA ACUSTICA, 2022, 47(6): 727-738. DOI: 10.15949/j.cnki.0371-0025.2022.06.004
Citation: GUO Gege, SUN Hongling, SUN Luyang, CAO Shengnan, YANG Jun. Influence of the near field of secondary source and the elasticity of pipe wall on active noise control performance of liquid-filled pipe[J]. ACTA ACUSTICA, 2022, 47(6): 727-738. DOI: 10.15949/j.cnki.0371-0025.2022.06.004

Influence of the near field of secondary source and the elasticity of pipe wall on active noise control performance of liquid-filled pipe

More Information
  • Received Date: January 02, 2022
  • Revised Date: May 12, 2022
  • Available Online: November 04, 2022
  • The numerical models of liquid-filled straight pipe system with active silencers are established. The influence of the near field of secondary source in active silencers and the elasticity of pipe wall on active noise control performance under sound excitation is analyzed. The results show that the near field of secondary source is non-uniform, and the active control effect of some frequencies is poor or even the sound pressure level will increase when the error points are located in this region. The noise reduction can be increased by more than 10 dB when the error points are in the region of uniform sound field. The noise reduction of most frequencies can be increased by more than 5 dB by increasing the number of error points. The coupling between secondary source and pipe wall is strong because of the elasticity of pipe wall. Asymmetrically distributed secondary sources tend to excite the pipe wall vibration, which causes the troughs of control effect. The symmetrically distributed secondary sources can significantly improve the control effect. Increasing the number of secondary sources can improve the active-passive hybrid control effect of the system. However, it makes the sound field in the pipe more complex, and the active silencing effect of the models with multiple secondary sources decreases with increasing frequency.
  • [1]
    Snyder S D, Hansen C H. Active noise control in ducts:some physical insights. J. Acoust. Soc. Am., 1989; 86(1):184-194
    [2]
    田静. 关于单极子次级声源管道有源降噪能量机制的理论分析. 声学学报, 1992; 17(5):369-374
    [3]
    吴斌, 费仁元, 周大森. 管道噪声有源控制的声学特性研究I理论分析. 北京工业大学学报, 2003; 29(4):411-417
    [4]
    Nelson P A, Curtis A, Elliott S J et al. The minimum power output of free field point sources and the active control of sound. J. Sound Vib., 1987; 116(3):397-414
    [5]
    王冲, 孙朝晖, 孙进才. 自适应空间有源消声中误差传声器的位置及个数优化. 声学学报, 1994; 19(3):179-187
    [6]
    陈克安, 李海英, 孙进才. 自由声场自适应有源噪声控制中误差传感器的布放. 振动工程学报, 1996; 9(4):348-352
    [7]
    Duke C R, Sommerfeldt S D, Gee K L et al. Optimization of control source locations in free-field active noise control using a genetic algorithm. Noise Control Eng., 2009; 57(3):221-231
    [8]
    陈克安, 胥健, 王磊等. 基于声场分解和稀疏正则化的二维空间次级声源布局优化. 西北工业大学学报, 2019; 37(4):697-703
    [9]
    Tao J, Guo Q, Qiu X. A near-field error sensing strategy for compact multi-channel active sound radiation control in free field. J. Acoust. Soc. Am., 2019; 146(4):2179-2187
    [10]
    陈克安, 马远良. 封闭空间自适应有源噪声控制误差传声器的最优布放. 声学学报, 1993; 18(5):357-366
    [11]
    Baek K H, Elliott S J. Natural algorithms for choosing source locations in active control systems. J. Sound Vib., 1995; 186(2):245-267
    [12]
    李海英, 陈捷, 陈克安等. 一种封闭空间自适应有源噪声控制系统优化方法. 振动工程学报, 2001; 14(2):150-155
    [13]
    Yu G, Li C. Location optimization of a long T-shaped acoustic resonator array in noise control of enclosures. J. Sound Vib., 2009; 328(1——2):42-56
    [14]
    Pasqual A M, Martin V. Optimal secondary source position in exterior spherical acoustical holophony. J. Sound Vib., 2012; 331(4):785-797
    [15]
    王登峰, 刘学广, 刘宗巍等. 车内自适应有源消声系统次级声源布放试验. 中国公路学报, 2006; 19(3):122-126
    [16]
    Wang S, Sun H, Pan J et al. Near-field error sensing for active directivity control of radiated sound. J. Acoust. Soc. Am., 2018; 144(2):598-607
    [17]
    Zander A C, Hansen C H. A comparison of error sensor strategies for the active control of duct noise. J. Acoust. Soc. Am., 1993; 94(2):841-848
    [18]
    刘会灯, 邱阿瑞. 管道噪声有源控制系统的次级声源和误差传感器位置优化. 清华大学学报:自然科学版, 2011; 51(3):382-389
    [19]
    Tian X, Zhou S, Leng C. Influence of noise frequency on secondary sound source layout for a duct active noise control system. The 20196th International Conference on Systems and Informatics (ICSAI), 2019
    [20]
    罗平展, 徐健, 张芳杰, 李晓东. 壁面分布次级声源对管道中高阶模式声波的有源控制. 声学学报, 2021; 46(6):1193-1201
    [21]
    黄河. 有限长充液圆柱壳管口声辐射有源控制理论与实验研究. 硕士学位论文, 哈尔滨:哈尔滨工程大学, 2017
    [22]
    孙运平. 充液管路系统低频线谱噪声与振动有源控制实验研究. 博士学位论文, 北京:中国科学院声学研究所, 2019
    [23]
    Nelson P A, Elliott S J. Active control of sound. Academic Press, London, 1992
    [24]
    黎亚军, 孙红灵, 孙陆阳, 杨军. 弯管对末端带弹性障板充液管路辐射声能量的影响. 声学学报, 2022; 47(1):126-138
    [25]
    Elliott S. Signal processing for active control. Academic Press, US, 2000
  • Related Articles

    [1]SUN Yunping, SUN Hongling, ZHANG Wei, WANG Han, YANG Jun. Hybrid active control of fluid-borne sound and structure-borne sound in liquid-filled pipe system[J]. ACTA ACUSTICA, 2019, 44(4): 780-787. DOI: 10.15949/j.cnki.0371-0025.2019.04.040
    [2]GENG Houcai, RAO Zhushi, HAN Zushun, ZHANG Hualiang. Active control of interior noise within an irregular enclosure under the cooperation of point force and incident wave[J]. ACTA ACUSTICA, 2002, 27(2): 107-111. DOI: 10.15949/j.cnki.0371-0025.2002.02.003
    [3]FENG Jinwei, SHA Jiazheng. Study on sound energy distribution of active noise reduction in 3D space[J]. ACTA ACUSTICA, 1996, 21(5): 844-850. DOI: 10.15949/j.cnki.0371-0025.1996.05.011
    [4]ZHU Yanwu, LIAN Xiaomin, LIU Qiyuan, XIE Hua, XU Guoxian, JIANG Xiaoyu. A study on active noise cancellation earmuff[J]. ACTA ACUSTICA, 1996, 21(2): 123-127. DOI: 10.15949/j.cnki.0371-0025.1996.02.004
    [5]HOU Hong, WANG Chong, YANG Jianhua, SUN Jincai. Active sound control by diectional secondary sources in the free field[J]. ACTA ACUSTICA, 1995, 20(3): 191-198. DOI: 10.15949/j.cnki.0371-0025.1995.03.005
    [6]CHEN Ke-an, MA Yuan-liang, SUN Jin-cai. Active noise control within enclosed space surrounded by flexible structure[J]. ACTA ACUSTICA, 1994, 19(6): 434-443. DOI: 10.15949/j.cnki.0371-0025.1994.06.006
    [7]CHEN Ke-an, MA Yuan-liang. Adaptive active broadband noise control[J]. ACTA ACUSTICA, 1994, 19(2): 101-109. DOI: 10.15949/j.cnki.0371-0025.1994.02.003
    [8]TIAN Jing, SHA Jia-zheng. A STUDY OF SPATIAL ACTIVE NOISE ATTENUATORS[J]. ACTA ACUSTICA, 1987, 12(1): 16-21. DOI: 10.15949/j.cnki.0371-0025.1987.01.003
    [9]SHA JIA-ZHENG, SUN GUANG-RONG, CAO SHUI-XUAN, WU QI-XUE. STUDY ON ABSORBING SOUND MECHANISM OF ACTIVE SOUND ABSORBER[J]. ACTA ACUSTICA, 1983, 8(2): 93-99. DOI: 10.15949/j.cnki.0371-0025.1983.02.004
    [10]SHA Jia-zheng, SUN Guang-rong, CAO Shui-xuan, WU Qi-xue. ACTIVE SOUND ABSORBER IN DUCTS[J]. ACTA ACUSTICA, 1981, 6(3): 137-141. DOI: 10.15949/j.cnki.0371-0025.1981.03.002
  • Cited by

    Periodical cited type(2)

    1. 郭格格,孙红灵,孙陆阳,米泽宁. 次级源和误差传感器布放对带弹性障板的充液直管声振复合有源控制的影响. 应用声学. 2024(03): 505-512 .
    2. 杨慧荣. 汽车瞬时压力控制系统充液管道参数研究. 装备机械. 2023(03): 28-31 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (210) PDF downloads (29) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return