EI / SCOPUS / CSCD 收录

中文核心期刊

BAO Yongqiang, ZHAO Li, ZOU Cairong. Text-independent speaker recognition using normalization compensation transformation[J]. ACTA ACUSTICA, 2006, 31(1): 55-60. DOI: 10.15949/j.cnki.0371-0025.2006.01.009
Citation: BAO Yongqiang, ZHAO Li, ZOU Cairong. Text-independent speaker recognition using normalization compensation transformation[J]. ACTA ACUSTICA, 2006, 31(1): 55-60. DOI: 10.15949/j.cnki.0371-0025.2006.01.009

Text-independent speaker recognition using normalization compensation transformation

More Information
  • PACS: 
    • 43.72  (Speech processing and communication systems)
  • Received Date: March 17, 2004
  • Revised Date: October 08, 2005
  • Available Online: July 19, 2022
  • Based on the acoustic characteristic of frame likelihood probability output by Gaussian Mixture Model (GMM) which was the best text-independent speaker recognition model,normalization compensation transformation as a non-llnear transform method was presented.The theory analysis and experiment showed that it could improve recognition ratio 3.7% and reduce the error recognition ratio 45.1% as compared with Maximum-Likelihood (ML) transformation.The result showed:normalization compensation transformation should be adopted for cancelling the influence of variations in speech characteristics,noise and model mismatch;Process on frame likelihood probability output by GMM is effectual way of decreasing the influence of noise and improving the recognition ratio.
  • Related Articles

    [1]SHANG Zengqiang, ZHANG Pengyuan, WANG Li. Multilingual text-to-waveform with cross-speaker prosody transfer[J]. ACTA ACUSTICA, 2024, 49(1): 171-180. DOI: 10.12395/0371-0025.2022146
    [2]ZHONG Weifeng, FANG Xiang, FAN Cunhang, WEN Zhengqi, TAO Jianhua. Fusion of deep shallow features and models for speaker recognition[J]. ACTA ACUSTICA, 2018, 43(2): 263-272. DOI: 10.15949/j.cnki.0371-0025.2018.02.016
    [3]WU Di, TAO Zhi, ZHANG Xiaojun, ZHOU Yan, PAN Xinyu, XIAO Zhongzhe, ZHAO Heming. Perception auditory scene analysis for speaker recognition[J]. ACTA ACUSTICA, 2016, 41(2): 260-272. DOI: 10.15949/j.cnki.0371-0025.2016.02.015
    [4]WU Haiyang, YANG Feiran, ZHOU Lin, WU Zhenyang. Feature compensation algorithm based on vector Taylor series for speaker recognition[J]. ACTA ACUSTICA, 2013, 38(1): 105-112. DOI: 10.15949/j.cnki.0371-0025.2013.01.013
    [5]GU Xiaojiang, ZHAO Heming, LÜ Gang. An application in whispered speaker identification using feature and model hybrid compensation method[J]. ACTA ACUSTICA, 2012, 37(2): 198-203. DOI: 10.15949/j.cnki.0371-0025.2012.02.008
    [6]JIANG Tao, HAN Ji-qing, ZHENG Tie-ran. Gaussian mixture model compensation method using shift factor for speaker recognition[J]. ACTA ACUSTICA, 2011, 36(6): 658-664. DOI: 10.15949/j.cnki.0371-0025.2011.06.009
    [7]YU Yibiao, YUAN Dongmei, XUE Feng. A non-linear frequency transform for speaker recognition[J]. ACTA ACUSTICA, 2008, 33(5): 450-455. DOI: 10.15949/j.cnki.0371-0025.2008.05.014
    [8]YU Yibiao, WANG Shuozhong. Text-independent speaker identification using complete feature corpus and mutual information evaluation[J]. ACTA ACUSTICA, 2005, 30(6): 536-541. DOI: 10.15949/j.cnki.0371-0025.2005.06.009
    [9]YU Yibiao, WANG Shuozhong. Text-dependent speaker identification based on mutual information matching model[J]. ACTA ACUSTICA, 2004, 29(5): 462-466. DOI: 10.15949/j.cnki.0371-0025.2004.05.014
    [10]YUE Xicai, WU Xiaoyu, ZHENG Chongxun. Text-independent speaker identification using neural array networks[J]. ACTA ACUSTICA, 2000, 25(3): 230-234. DOI: 10.15949/j.cnki.0371-0025.2000.03.006

Catalog

    Article Metrics

    Article views (47) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return